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Data clustering, an interdisciplinary field with diverse applications, has gained 
increasing popularity since its origins in the 1950s. Over the past six decades, 
researchers from various fields have proposed numerous clustering algorithms. 
In 2011, I wrote a book on implementing clustering algorithms in C++ using ob-
ject-oriented programming. While C++ offers efficiency, its steep learning curve 
makes it less ideal for rapid prototyping. Since then, Python has surged in pop-
ularity, becoming the most widely used programming language since 2022. Its 
simplicity and extensive scientific libraries make it an excellent choice for imple-
menting clustering algorithms.

Features:
• Introduction to Python programming fundamentals
• Overview of key concepts in data clustering
• Implementation of popular clustering algorithms in Python
• Practical examples of applying clustering algorithms to datasets
• Access to associated Python code on GitHub

This book extends my previous work by implementing clustering algorithms in 
Python. Unlike the object-oriented approach in C++, this book uses a procedural 
programming style, as Python allows many clustering algorithms to be imple-
mented concisely. The book is divided into two parts: the first introduces Py-
thon and key libraries like NumPy, Pandas, and Matplotlib, while the second cov-
ers clustering algorithms, including hierarchical and partitional methods. Each 
chapter includes theoretical explanations, Python implementations, and practical 
examples, with comparisons to scikit-learn where applicable.

This book is ideal for anyone interested in clustering algorithms, with no prior 
Python experience required. The complete source code is available at: https://
github.com/ganml/dcpython.

Guojun Gan is an Associate Professor in the Department of Mathematics at the 
University of Connecticut, where he has been since August 2014. Prior to that, 
he worked at a large life insurance company in Toronto, Canada for six years and 
a hedge fund in Oakville, Canada for one year. He earned a BS degree from Jilin 
University, Changchun, China, in 2001 and MS and PhD degrees from York Uni-
versity, Toronto, Canada, in 2003 and 2007, respectively.
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Preface

Data clustering, an interdisciplinary field with diverse applications, has gained
increasing popularity since its origins in the 1950s. Over the past six decades,
researchers from various fields have proposed numerous clustering algorithms.
In 2011, I wrote a book on implementing clustering algorithms in C++ using
object-oriented design and programming techniques [94]. While C++ offers
efficiency and speed, it has a steep learning curve, making it less ideal for
prototyping clustering algorithms.

Fourteen years have passed since the publication of that book, and much
has changed in the machine learning and data mining communities. Notably,
Python has surged in popularity. According to the TIOBE Index 1, Python
has been the most widely used programming language since 2022. Its clear
syntax and extensive ecosystem of libraries have made it easier than ever to
implement clustering algorithms efficiently.

This book extends the concepts from my C++ book by implementing clus-
tering algorithms in Python. While some chapters overlap, the implementa-
tion approach differs significantly. The C++ book adopted an object-oriented
framework to maximize code reuse. In contrast, this book employs a procedu-
ral programming approach, as many clustering algorithms can be implemented
in Python with just a few lines of code.

The book is divided into two parts. The first part introduces Python and
key libraries commonly used in scientific computing and data science, includ-
ing NumPy, Pandas, and Matplotlib. The second part focuses on implement-
ing popular clustering algorithms, covering both hierarchical and partitional
methods.

Each chapter on clustering algorithms follows a structured format. I begin
with a theoretical overview, followed by the Python implementation, and con-
clude with demonstrations using both synthetic and real-world data. For some
algorithms, I also compare our implementations with those in the scikit-learn
package.

This book is suitable for anyone interested in learning data clustering and
implementing clustering algorithms in Python. No prior knowledge of Python
is required. Readers already familiar with Python may skip the first part and
proceed directly to the second. Most of the Python code is included within
the book, and the complete set of source files is available at:

https://github.com/ganml/dcpython

1https://www.tiobe.com/tiobe-index/. Accessed on February 1, 2025.
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xii Preface

Hands-on practice is one of the best ways to learn. I encourage readers
to experiment with the code and examples, modify the implementations, and
explore new clustering algorithms. Unlike the implementations in well-known
Python libraries such as scikit-learn, the code in this book is designed for clar-
ity and simplicity, assuming users will provide valid input without extensive
error handling.

Finally, I would like to acknowledge the support provided by the Makuch
Faculty Fund from the Department of Mathematics at the University of Con-
necticut.

Storrs, CT
Guojun Gan
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Python Programming 101

Python is one of the most widely used programming languages today. In this
chapter, we provide a concise introduction to the Python programming lan-
guage, covering essential topics for beginners. Specifically, we will discuss how
to set up Python environments, explore the basics of Python programming,
and introduce some common packages frequently used in data science.

1.1 Installation

A straightforward way to install Python on your computer is to use the
individual edition of the Anaconda distribution, available at https://www.

anaconda.com. This edition is open-source and compatible with Windows,
macOS, and Linux. Anaconda offers two versions: the full Anaconda distribu-
tion and Miniconda. The full distribution includes over 300 pre-installed data
science and machine learning packages but requires more disk space. In con-
trast, Miniconda is a lightweight installer that includes only conda, Python,
and a few essential packages.

In this book, we will use the Miniconda distribution since we do not re-
quire all the packages included in the full Anaconda distribution. The latest
Miniconda installer can be downloaded from https://docs.anaconda.com/

miniconda/. At the time of writing this book, the most recent version of
Miniconda was Conda 24.7.1, released on August 22, 2024, for Python 3.12.4.

Once the Miniconda is installed, we can open the Anaconda Prompt. In a
Windows computer, for example, typing dir in the Anaconda Prompt gives
the following output:

1 (base) C:\ Users\gjgan >dir

2 Directory of C:\Users\gjgan

3

4 09/08/2024 10:14 AM <DIR > .

5 07/10/2024 02:43 PM <DIR > ..

6 07/17/2024 09:53 PM <DIR > .cache

7 09/08/2024 10:14 AM <DIR > .conda

8 07/10/2024 08:09 PM <DIR > .eclipse

9 07/18/2024 08:53 AM 54 .gitconfig

DOI: 10.1201/9781003592648-1 3

https://www.anaconda.com
https://docs.anaconda.com/miniconda
https://www.anaconda.com
https://docs.anaconda.com/miniconda
https://doi.org/10.1201/9781003592648-1
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10 07/10/2024 03:02 PM <DIR > .m2

11 07/10/2024 06:36 PM <DIR > .ms -ad

12 07/11/2024 02:21 PM <DIR > .openjfx

13 09/06/2024 07:32 AM <DIR > .p2

14 07/10/2024 02:42 PM <DIR > .ssh

15 07/14/2024 04:04 PM <DIR > Canon

16 07/10/2024 02:15 PM <DIR > Contacts

17 07/10/2024 04:14 PM <DIR > Documents

18 09/08/2024 12:52 PM <DIR > Downloads

19 07/10/2024 02:44 PM <DIR > eclipse

20 07/10/2024 02:15 PM <DIR > Favorites

21 07/10/2024 02:15 PM <DIR > Links

22 09/08/2024 10:14 AM <DIR > miniconda3

23 07/10/2024 02:15 PM <DIR > Music

24 09/05/2024 11:25 PM <DIR > OneDrive

25 07/10/2024 02:15 PM <DIR > Saved Games

26 07/10/2024 03:21 PM <DIR > Searches

27 07/11/2024 10:09 PM <DIR > Videos

28 1 File(s) 54 bytes

29 23 Dir(s) 922 ,031 ,411 ,200 bytes free

30

31 (base) C:\ Users\gjgan >

From the above output, we see the directory miniconda3, which is the instal-
lation location for Miniconda.

Once Miniconda is installed, we can create a conda environment, which
is a self-contained, isolated space where specific versions of Python packages
can be installed. Using a conda environment is highly beneficial as it helps
avoid conflicts between Python packages. To create a conda environment, we
can define the required Python packages in a YAML (Yet Another Markup
Language) file and then use the Conda Prompt to build the environment.

1 name: dc

2 channels:

3 - conda -forge

4 - pytorch

5 dependencies:

6 - cython

7 - python

8 - pytorch

9 - numpy

10 - pandas

11 - matplotlib

12 - scikit -learn

13 - ucimlrepo

14 - spyder

Listing 1.1: Content of the YAML file dc.yml used to create the conda
environment.
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Listing 1.1 shows the content of a YAML file that can be used to create
a conda environment. Suppose that the YAML file was saved to the direc-
tory documents. To create the conda environment, we execute the following
command in the Conda Prompt:

1 conda env create -f documents\dc.yml

It may take a few minutes for the command to complete. Once the command
finishes executing, the following output will appear in the Conda Prompt:

1 Channels:

2 - conda -forge

3 - pytorch

4 - defaults

5 Platform: win -64

6 Collecting package metadata (repodata.json): done

7 Solving environment: done

8

9 Downloading and Extracting Packages:

10

11 Preparing transaction: done

12 Verifying transaction: done

13 Executing transaction: done

14 #

15 # To activate this environment , use

16 #

17 # $ conda activate dc

18 #

19 # To deactivate an active environment , use

20 #

21 # $ conda deactivate

The conda environment created using the YAML file includes several com-
mon Python packages: NumPy, Pandas, Matplotlib, scikit-learn, and uciml-
repo. Additionally, the environment comes with Spyder, a Python code edi-
tor. Spyder is an open-source integrated development environment (IDE) for
Python that supports advanced editing, interactive testing, and debugging.
Figure 1.1 shows a screenshot of the Spyder interface when the program is
launched. To check the versions of the installed packages, execute the follow-
ing command in the Conda Prompt:

1 conda list -c "^( numpy|pandas|matplotlib|scikit|ucimlrepo|

spyder)"

After executing the command in the Conda Prompt, the following information
was displayed:

1 conda -forge/win -64:: matplotlib -3.10.0 - py312h2e8e312_0

2 conda -forge/win -64:: matplotlib -base -3.10.0 - py312h90004f6_0

3 conda -forge/noarch ::matplotlib -inline -0.1.7 - pyhd8ed1ab_1

4 conda -forge/win -64:: numpy -2.2.1 - py312hf10105a_0
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5 conda -forge/noarch ::numpydoc -1.8.0 - pyhd8ed1ab_1

6 conda -forge/win -64:: pandas -2.2.3 - py312h72972c8_1

7 conda -forge/win -64:: scikit -learn -1.6.0 - py312h816cc57_0

8 conda -forge/win -64:: spyder -6.0.3 - py312h2e8e312_1

9 conda -forge/noarch ::spyder -kernels -3.0.2 - win_pyh7428d3b_0

10 conda -forge/noarch ::ucimlrepo -0.0.7 - pyhd8ed1ab_0

Since Python packages are updated frequently, the versions you see when
building the conda environment may differ from those listed above.

FIGURE 1.1: A screenshot of the Spyder editor.
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1.2 Variables and data types

In programming, a variable is a named storage location that holds a value or
data. Variables allow us to reference and manipulate the stored values or data.
Unlike in languages such as Java or C++, Python does not require explicit
variable declarations. Instead, a variable is created simply by assigning a value
to it:

1 pi = 3.1415926

2 print(pi)

In the code above, we create a variable named pi and assign it the value
3.1415926. We then use Python’s print function to display the value stored in
the variable pi. When the code is executed, the output 3.1415926 is displayed.

Python supports multiple assignments in a single line. For example, we
can assign values to two variables simultaneously, as shown below:

1 x, y = 1, 2

The line of code above assigns the value 1 to the variable x and 2 to the variable
y. Multiple assignments can also be used to swap the values of variables. For
example, in the following code, we first assign values to three variables, x, y,
and z, and then swap their values:

1 x, y, z = 1, 2, 3

2 print(x)

3 print(y)

4 print(z)

5 x, y, z = y, z, x

6 print(x)

7 print(y)

8 print(z)

When the above block of code is executed in Spyder, the following output is
displayed:

1 1

2 2

3 3

4 2

5 3

6 1

In Python, variable names must adhere to the following rules:

• Valid characters include lowercase letters, uppercase letters, numbers,
and underscores ( ).
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• A variable name must begin with a letter or an underscore and cannot
start with a number.

• A variable name cannot be a Python keyword (reserved word).

To view a list of Python keywords, we can run the following code:

1 import keyword

2 print(keyword.kwlist)

After running the code above, the following output was displayed:

1 ['False ', 'None', 'True', 'and', 'as', 'assert ', 'async', '
await ', 'break ', 'class ', 'continue ', 'def', 'del', '
elif', 'else', 'except ', 'finally ', 'for', 'from', '
global ', 'if', 'import ', 'in', 'is', 'lambda ', '
nonlocal ', 'not', 'or', 'pass', 'raise ', 'return ', 'try
', 'while ', 'with', 'yield']

The current version of Python includes 35 keywords, which cannot be used
as variable names. Additionally, variable names in Python are case-sensitive.
For example, pi and Pi are considered distinct variable names.

Python has four fundamental data types: integers, floats, booleans, and
strings. An integer represents a whole number without a decimal point, while
a float represents a real number with decimal precision. A boolean is a binary
type that can only take the values True or False. A string is a sequence of
characters enclosed in either single or double quotes.

In the following code, we create four variables, each assigned a value of
a different data type. We then use Python’s type function to determine the
data type of each variable.

1 bA = True

2 iB = 2024

3 fC = 3.14

4 sD = 'data'
5 type(bA)

6 type(iB)

7 type(fC)

8 type(sD)

If we run the code line by line in Spyder, the following output will be displayed:

1 bA = True

2

3 iB = 2024

4

5 fC = 3.14

6

7 sD = 'data'
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8

9 type(bA)

10 Out [1148]: bool

11

12 type(iB)

13 Out [1149]: int

14

15 type(fC)

16 Out [1150]: float

17

18 type(sD)

19 Out [1151]: str

Strings are a special type of data. A string is essentially a sequence of
characters, where each character has a specific position, known as its index.
When indexed from left to right, the characters are assigned indices starting
from 0 up to n − 1, where n is the length of the string. When indexed from
right to left, the characters are assigned indices starting from −1 down to −n.
In the following code, we define a string, determine its length, and extract
substrings using indexing:

1 s1 = "a string"

2 len(s1)

3 s1[0:2]

4 s1[-1]

5 s1[-3:-1]

6 s1[-3:]

When the above code is executed line by line in Spyder, the following output
will be displayed:

1 s1 = "a string"

2

3 len(s1)

4 Out [34]: 8

5

6 s1[0:2]

7 Out [35]: 'a '
8

9 s1[-1]

10 Out [36]: 'g'
11

12 s1[-3:-1]

13 Out [37]: 'in'
14

15 s1[-3:]

16 Out [38]: 'ing'
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TABLE 1.1: A list of operators and functions for manipulating strings

Function Description

+ Concatenates two strings.
* Repeats a string a specified number of times.
[:] Slices a string based on character positions.
in Checks if a string is a substring of another

string.
replace Replaces a substring within a string with an-

other substring.
split Splits a string into a list of substrings using a

specified delimiter.
format Formats a string by replacing placeholders ()

with specified values.
join Joins a list of strings into a single string using

a specified delimiter.

Table 1.1 lists some commonly used operators and functions for manip-
ulating strings. The following block of code demonstrates how to use these
operators and functions:

1 print("a " + "string")

2 print("a" * 5)

3 print("string"[0:3])

4 print("str" in "string")

5 print("string".replace("s", "S"))

6 print("1,2,3".split(","))

7 print("{} and {} are the results".format(1, 2))

8 print(",".join(["1", "2", "3"]))

When the above block of code is executed in Spyder, the following output is
displayed:

1 a string

2 aaaaa

3 str

4 True

5 String

6 ['1', '2', '3']
7 1 and 2 are the results

8 1,2,3
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1.3 Data structures

Python has four fundamental data structures: lists, tuples, dictionaries, and
sets. A list is an ordered collection of elements, which can be of any data type.
Lists are defined using square brackets [], with elements separated by commas.
The following code demonstrates a list containing three items:

1 lst1 = ["a", 1, True]

2 print(lst1)

3 print(lst1 [0])

The three elements have different data types. When the above block of code
is executed in Spyder, the following output is displayed:

1 ['a', 1, True]

2 a

Lists are mutable. For example, we can add an element to the end of a list by
using the function append:

1 lst1.append (3.14)

2 print(lst1)

In the above code, we add the number 3.14 to the end of the list lst1. Exe-
cuting the above block of code, we get the following output:

1 ['a', 1, True , 3.14]

We can also insert an element into a specified position of a list. In the following
code, we insert the number 3.14 before the position 0:

1 lst1.insert(0, 3.14)

2 print(lst1)

The output of the above code is

1 [3.14 , 'a', 1, True , 3.14]

Elements of a list can be accessed by indexing and slicing. Table 1.2 shows
different methods for accessing elements of a list. The indices of elements of
a list have two forms. For a list with n elements, the indices of the elements
are 0, 1, . . . , n− 1 or −n,−(n− 1), . . . ,−1.

The following code gives some examples of accessing elements of lst1:

1 print(lst1 [0]) # get the first element

2 print(lst1 [-1]) # get the last element

3 print(lst1 [1:3]) # get the second and the third elemnts

4 print(lst1 [ -3:]) # get the last three elements
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TABLE 1.2: Methods for accessing elements in a list.

Method Description

[pos] Gets the element with index pos
[start:stop] Gets elements with indices from start (inclu-

sive) to stop (exclusive)
[start:stop:stride] Gets elements with indices from start (inclu-

sive) to stop (exclusive) with step size stride

5 print(lst1 [1:]) # get all elements except the first one

6 print(lst1 [:3]) # get the first three elements

7 print(lst1 [:: -1]) # get elements with indices -1, -2, ...

8 print(lst1 [0:3:2]) # get elements 0, 2

9 print(lst1 [-2:-4:-2]) # get element -2

The pound sign # in the above code is the comment symbol in Python. Code
appears after the pound sign will not be executed. Executing the above code
gives the following output:

1 3.14

2 3.14

3 ['a', 1]

4 [1, True , 3.14]

5 ['a', 1, True , 3.14]

6 [3.14 , 'a', 1]

7 [3.14 , True , 1, 'a', 3.14]

8 [3.14 , 1]

9 [True]

From the output, we see that the method [::-1] essentially reverses the list.
We can change values of individual elements in a list by assigning new

values to them. To change the first two elements, we can proceed as follows:

1 lst1 [0:2] = [-1, -2]

2 print(lst1)

In the above code, we change the first two elements to be −1 and −2, respec-
tively. The output of the above code is

1 [-1, -2, 1, True , 3.14]

Table 1.3 lists some commonly used functions for lists.
A tuple is a data structure that is similar to a list. However, tuples are

immutable. Once a tuple is created, it cannot be modified. Tuples are defined
by parentheses and elements of a tuple are separated by commas. The following
code creates two tuples of different sizes:
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In the above code, we change the first two elements to be −1 and −2, respec-
tively. The output of the above code is

1 [-1, -2, 1, True , 3.14]

Table 1.3 lists some commonly used functions for lists.
A tuple is a data structure that is similar to a list. However, tuples are

immutable. Once a tuple is created, it cannot be modified. Tuples are defined
by parentheses and elements of a tuple are separated by commas. The following
code creates two tuples of different sizes:
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TABLE 1.3: Python functions for lists.

Function Description

append Adds an element to the end of a list
clear Removes all elements from a list
copy Creates a copy of a list
count Counts the number of elements with the specified value
extend Adds all elements of a collection to the end of a list
index Gets the index of the first element with the specified value
insert Inserts an element to the specified position
len Counts the number of elements in a list
pop Removes an element at the specified position
remove Removes the first element with the specified value
reverse Reverses the order of the elements in a list
sort Sorts the elements of a list

1 t1 = (1, 3)

2 t2 = ("a", True , 1)

3 print(t1)

4 print(t2)

Executing the above code creates two tuples and gives the following output:

1 (1, 3)

2 ('a', True , 1)

Elements of a tuple can be accessed by square brackets with indices. The
following code shows how to get elements of tuples:

1 print(t1[1])

2 print(t2 [1:3])

Executing the above code gives the following output:

1 3

2 (True , 1)

Unlike lists and tuples, a dictionary is a data structure used to store key-
value pairs. A dictionary is created by using curly brackets. Key-value pairs
are separated by commas. The key and the value of a pair are separated by a
colon. The following code creates a dictionary with two elements:

1 m1 = {"a" : 1, "b" : 2}

2 print(m1)
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Executing the above code gives the following output:

1 {'a': 1, 'b': 2}

Values in a dictionary can be accessed by their keys. For example, the following
code shows how to access values stored in m1:

1 print(m1["a"])

2 print(m1["b"])

The output of the above code is

1 1

2 2

TABLE 1.4: A list of functions for dictionaries.

Function Description

clear Removes all elements from a dictionary
copy Creates a copy of a dictionary
fromkeys Returns a dictionary with the specified keys and a specified

value
get Returns the value of a specified key
items Returns a view object of all key-value pairs of a dictionary
keys Returns a view object of all keys of a dictionary
pop Removes a specified key and return the corresponding value
setdefault Inserts a key with a specified value if the key does not exist;

otherwise, returns the value of the key
update Updates a dictionary with the specified key-value pairs
values Returns a view object of all values of a dictionary

Table 1.4 provides a list of functions for manipulating dictionaries. For
instance, to retrieve the keys and values of the dictionary m1 created earlier,
we can use the following code:

1 print(m1.keys())

2 print(m1.values ())

3 print(m1.items())

Executing the above code gives the following output:

1 dict_keys (['a', 'b'])
2 dict_values ([1, 2])

3 dict_items ([('a', 1), ('b', 2)])

The outputs given above are view objects, which dynamically reflect any
changes made to the corresponding dictionary. These view objects can be
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converted into lists using the list function. For example, the view objects
can be transformed into lists as follows:

1 print(list(m1.keys()))

2 print(list(m1.values ()))

3 print(list(m1.items()))

The output of the above code is

1 ['a', 'b']
2 [1, 2]

3 [('a', 1), ('b', 2)]

A set is a collection of unordered and unique elements. In Python, a set
can be created using curly brackets {} or the set function. For example, the
following code demonstrates how to create two sets:

1 s1 = set()

2 s1.add (1)

3 s1.add("a")

4 s2 = {1, "a", "b", True , False}

5 print(s1)

6 print(s2)

In this example, s1 and s2 are sets containing unique elements. Sets automat-
ically eliminate duplicate values, ensuring that each item appears only once.
Additionally, sets are unordered, meaning that the elements are not stored in
any specific sequence. Executing the above block of code gives the following
output:

1 {1, 'a'}
2 {False , 1, 'a', 'b'}

When we create the set s2, the boolean value True is included in the curly
brackets. However, the boolean value True does not appear in the output. The
reason is that non-zero values in Python are treated as true.

Table 1.5 provides a list of commonly used functions for working with sets.
Among these, two functions are particularly useful for removing elements from
a set: discard and remove. The key difference between them is that discard
does not raise an error if the set does not contain the specified element, whereas
remove will raise an error in such cases. This distinction makes discard a safer
option when the presence of the element is uncertain.

1.4 Operators

Operators are special symbols that are used to perform operations on vari-
ables and values. They can be categorized into several types based on their
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TABLE 1.5: A list of functions for manipulating sets.

Function Description

add Adds an element to a set
clear Removes all elements from a set
copy Creates a copy of a set
difference Returns a set containing the difference be-

tween two or more sets
discard Removes an element from a set
intersection Returns a set containing the common elements

of this set and another set
isdisjoint Returns whether this set is disjoint to another
issubset Returns whether this set is a subset of another

set
issuperset Returns whether another set is a subset of this

set
pop Removes an element from a set
remove Removes a specified element from a set
symmetric difference Returns a set containing symmetric differences

this set and another set
union Returns a set containing the union of this set

and another set
update Updates a set with its union with other sets

functionality: arithmetic operators, assignment operators, comparison opera-
tors, logical operators, identity operators, membership operators, and bitwise
operators.

Arithmetic operators are used to perform basic mathematical operations,
including addition, subtraction, multiplication, and division. Table 1.6 pro-
vides a list of arithmetic operators supported by Python. The first five opera-
tors in Table 1.6 are straightforward and intuitive. The modulus operator and
the floor division operator are closely related. The modulus operator returns
the remainder when the first operand is divided by the second operand, while
the floor division operator returns the largest integer less than or equal to the
quotient of the division. Let x and y (y ̸= 0) be two real numbers. Then we
have

x = y ∗ (x//y) + (x%y).

The following block of code demonstrates the usage of arithmetic opera-
tors:

1 print("2 + 3 =", 2 + 3)

2 print("2 - 3 =", 2 - 3)

3 print("2 * 3 =", 2 * 3)

4 print("2 / 3 =", 2 / 3)

5 print("2 ** 3 =", 2 ** 3)

6 print("3.5 % 0.6 =", 3.5 % 0.6)

7 print("3.5 // 0.6 =", 3.5 // 0.6)
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TABLE 1.6: Arithmetic operators in Python.

Operator Description

+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation
% Modulus
// Floor division

This code illustrates how each arithmetic operator works in Python, including
addition, subtraction, multiplication, division, floor division, modulus, and ex-
ponentiation. Executing the above block of code in Spyder gives the following
output:

1 2 + 3 = 5

2 2 - 3 = -1

3 2 * 3 = 6

4 2 / 3 = 0.6666666666666666

5 2 ** 3 = 8

6 3.5 % 0.6 = 0.5000000000000001

7 3.5 // 0.6 = 5.0

Assignment operators are used to assign values to variables. Table 1.7 lists
the assignment operators supported by Python. The most basic assignment
operator is =, which assigns a value to a variable. Other assignment operators
are compound assignment operators, which combine an arithmetic operator
with the assignment operator. These operators perform an arithmetic opera-
tion on the two operands and then assign the result to the left operand. For
instance, the expression x += 2 is shorthand for x = x + 2, where the value
of x is incremented by 2 and the result is stored back in x.

TABLE 1.7: Assignment operators in Python.

Operator Description

= Assignment
+= Addition assignment
-= Subtraction assignment
*= Multiplication assignment
/= Division assignment
**= Exponentiation assignment
%= Modulus assignment
//= Floor division assignment
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The following block of code demonstrates the usage of the assignment
operators:

1 x = 3.5

2 print("x =", x)

3 x += 0.6

4 print("x += 0.6:", x)

5 x -= 0.6

6 print("x -= 0.6:",x)

7 x *= 0.6

8 print("x *= 0.6:",x)

9 x /= 0.6

10 print("x /= 0.6:",x)

11 x %= 0.6

12 print("x %= 0.6:",x)

13 x //= 0.6

14 print("x //= 0.6:",x)

Executing the above block of code in Spyder gives the following output:

1 x = 3.5

2 x += 0.6: 4.1

3 x -= 0.6: 3.4999999999999996

4 x *= 0.6: 2.0999999999999996

5 x /= 0.6: 3.4999999999999996

6 x %= 0.6: 0.49999999999999967

7 x //= 0.6: 0.0

Comparison operators are used to compare two values. Table 1.8 lists the
comparison operators supported in Python. The following block of code illus-
trates these comparison operators:

1 print("1 == 2:", 1 == 2)

2 print("1 != 2:", 1 != 2)

3 print("1 < 2:", 1 < 2)

4 print("1 > 2:", 1 > 2)

5 print("1 <= 2:", 1 <= 2)

6 print("1 >= 2:", 1 >= 2)

The output of the above block of code is

1 1 == 2: False

2 1 != 2: True

3 1 < 2: True

4 1 > 2: False

5 1 <= 2: True

6 1 >= 2: False

In many programming languages, including Python, careful considera-
tion is required when using comparison operators due to potential numerical
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TABLE 1.8: Comparison operators in Python.

Operator Description

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

precision errors. For instance, the expression 3.5%0.6 yields 0.5. Therefore,
the comparison 3.5%0.6 > 0.5 should evaluate to false, as the result of the
modulus operation is not greater than 0.5. Consider the following piece of
code

1 print("3.5 % 0.6 > 0.5:", 3.5 % 0.6 > 0.5)

Executing the above code gives the following output

1 3.5 % 0.6 > 0.5: True

This is caused by numerical precision errors. To fix this problem, we need to
add a small number in the comparison. For example, we can fix the above
problem as follows:

1 print("3.5 % 0.6 > 0.5:", 3.5 % 0.6 > 0.5 + 1e-10)

The above code will produce the correct answer:

1 3.5 % 0.6 > 0.5: False

Logical operators are used to combine or evaluate conditional statements.
Table 1.9 lists the primary logical operators supported in Python. These op-
erators allow you to create more complex conditions by connecting multiple
expressions, enabling decisions based on combinations of true or false values.
The following piece of code illustrates the usage of the logical operators:

1 print("1 < 2 and 1 > 2: ", 1 < 2 and 1 > 2)

2 print("1 < 2 or 1 > 2: ", 1 < 2 or 1 > 2)

3 print("not 1 < 2:", not 1 < 2)

Executing the above block of code in Spyder gives the following output:

1 1 < 2 and 1 > 2: False

2 1 < 2 or 1 > 2: True

3 not 1 < 2: False
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TABLE 1.9: Logical operators in Python.

Operator Description

and Returns true if both operands are true
or Returns true if at least one operand is true
not Reverses the meaning of the operand

In addition to the operators mentioned earlier, Python also supports other
types of operators, such as identity operators and membership operators,
which are used to check object identity or membership within a sequence,
respectively. Table 1.9 provides a list of these operators. The following piece
of code illustrates the usage of these operators:

1 x = 1

2 y = [1, 2, 3]

3 z = [1, 2, 3]

4 print("x is y:", x is y)

5 print("x is not y:", x is not y)

6 print("y is z:", y is z)

7 print("x in y:", x in y)

8 print("x not in y:", x not in y)

9 print("y in z", y in z)

The output of the above piece of code is:

1 x is y: False

2 x is not y: True

3 y is z: False

4 x in y: True

5 x not in y: False

6 y in z False

The identity operators, is and is not, compare the memory locations of two
objects. In the example above, we observe that although y and z have identical
content, they are not the same object because they reside in different memory
locations.

TABLE 1.10: Identity and membership operators in Python.

Operator Description

is Return true if the operands are the same
is not Return true if the operands are different
in Return true if the second operand contains the first

operand
not in Return true if the second operand does not contain

the first operand
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FIGURE 1.2: Precedence of operators.

The Python operators discussed earlier follow a specific precedence, which
dictates the order in which operations are evaluated within an expression.
Figure 1.2 illustrates the precedence levels of these operators. Parentheses
have the highest precedence and can be used to explicitly group expressions,
ensuring clarity and correctness. If you are uncertain about the precedence
of an operator, using parentheses is a reliable way to control the evaluation
order.

1.5 Control statements and loops

In computer programming, control statements are used to manage the flow
of execution within a program, while loops are used to repeatedly execute a
block of statements. In Python, control statements include if, if-else, and
if-elif-else, which allow for conditional execution based on specific criteria.
Loops in Python include the for loop, which iterates over a sequence, and the
while loop, which repeats as long as a given condition remains true. Together,
these constructs enable flexible and efficient program logic.

The following piece of code illustrates the usage of the control statements:

1 x = 1

2 if x > 0:

3 print("x is positive")

4

5 y = 2

6 if x > y:

7 print("x is greather than y")



22 Python Programming 101

8 else:

9 print("x is not greater than y")

10

11 if y > 2:

12 print("y is greater than 2")

13 elif y == 2:

14 print("y is equal to 2")

15 else:

16 print("y is less than 2")

Executing the above block of code in Spyder gives the following output:

1 x is positive

2 x is not greater than y

3 y is equal to 2

In the code above, the statements inside the if block are indented. A key
feature of Python is its use of indentation to structure and organize code.
In the example above, we used 4 spaces for indentation, which is the most
common and widely recommended practice. However, you can choose to use
a different number of spaces for indentation, as long as you maintain con-
sistency throughout your code. Consistent indentation is crucial for ensuring
readability and avoiding syntax errors in Python.

In the following code, we use a for loop to calculate the sum of integers 1
to 10:

1 dSum = 0

2 for i in range(1, 11):

3 dSum += i

4 print(dSum)

When you execute the block of code above in Spyder, the result displayed will
be 55. In this code, we utilized the built-in function range, which generates
a sequence of integers starting from the specified start number (inclusive) up
to the stop number (exclusive). This function is commonly used to control
iterations in loops.

We can also use a while loop to calculate the sum of integers from 1 to
10 as follows:

1 dSum = 0

2 i = 0

3 while i < 10:

4 i += 1

5 dSum += i

6 print(dSum)

The output of the above code is also 55.
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All the control statements and loops can be nested. For example, we use
an if statement inside a for loop in the following code:

1 dSum = 0

2 for i in range(1, 1001):

3 dSum += i

4 if i % 100 == 0:

5 print("Iteration {}: {}".format(i, dSum))

In the above code, we use a for loop to calculate the sum from 1 to 1000
and display the result every 100 steps. Executing the above code gives the
following output:

1 Iteration 100: 5050

2 Iteration 200: 20100

3 Iteration 300: 45150

4 Iteration 400: 80200

5 Iteration 500: 125250

6 Iteration 600: 180300

7 Iteration 700: 245350

8 Iteration 800: 320400

9 Iteration 900: 405450

10 Iteration 1000: 500500

Python includes two key statements for controlling loops: break and
continue. The break statement enables a loop to exit prematurely, stopping
further iterations entirely. On the other hand, the continue statement skips
the remaining code in the current iteration and proceeds directly to the next
iteration of the loop. These statements provide greater flexibility in managing
loop behavior and flow. The following piece of code illustrates the usage of
the break statement:

1 dSum = 0

2 i = 0

3 while True:

4 i += 1

5 dSum += i

6 if i >= 10:

7 break

8 print(dSum)

In the code above, we implement an infinite loop, which continues indefinitely
until the condition i >= 10 is met, at which point the loop terminates. The
output of this code is 55. This example demonstrates how an infinite loop can
be controlled using a conditional statement to ensure it exits at the appropriate
time.

The following code shows how to use the continue statement to skip some
statements in a loop:
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1 dSum = 0

2 for i in range(1, 11):

3 if i % 2 == 1:

4 continue

5 dSum += i

6 print(dSum)

In the code above, when i is an odd number, the statement dSum += i is
skipped during that iteration. The code sums all even numbers between 1 and
10, resulting in a final value of 30.

It’s important to note that the break and continue statements only im-
pact the innermost loop that encloses them. They do not affect any outer
loops or other control structures in the program.

1.6 Functions

In Python, functions can be defined to encapsulate blocks of reusable code.
By using functions, we can reduce code duplication, improve readability, and
enhance the maintainability of our programs. Functions allow us to organize
code into modular components, making it easier to debug, test, and reuse.

The following block of code illustrates the syntax of defining a function in
Python:

1 def sqrt(x):

2 if x < 0:

3 return("{} is negative".format(x))

4 else:

5 return(math.sqrt(x))

6

7 print(sqrt(-1))

8 print(sqrt (2))

In the first line, def is a keyword used to define a function, sqrt is the name of
the function, and x within the parentheses represents an argument passed to
the function. This structure allows the function to accept input and perform
operations based on that input. Executing the above block of code in Spyder
gives the following output:

1 -1 is negative

2 1.4142135623730951

In the code above, we utilized the Python package math. To ensure the
code works, we must first import the package by running the following line of
code:
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enhance the maintainability of our programs. Functions allow us to organize
code into modular components, making it easier to debug, test, and reuse.

The following block of code illustrates the syntax of defining a function in
Python:

1 def sqrt(x):

2 if x < 0:

3 return("{} is negative".format(x))

4 else:

5 return(math.sqrt(x))

6

7 print(sqrt(-1))

8 print(sqrt (2))

In the first line, def is a keyword used to define a function, sqrt is the name of
the function, and x within the parentheses represents an argument passed to
the function. This structure allows the function to accept input and perform
operations based on that input. Executing the above block of code in Spyder
gives the following output:

1 -1 is negative

2 1.4142135623730951

In the code above, we utilized the Python package math. To ensure the
code works, we must first import the package by running the following line of
code:
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1 import math

This statement makes the functions and constants provided by the math pack-
age available for use in our program.

Python supports a special type of function called lambda functions, also
known as anonymous functions. A lambda function is a concise, nameless func-
tion typically used for short, simple operations where a full function definition
is unnecessary. Lambda functions are particularly useful for quick, inline func-
tionality. The following code illustrates the definition and the use of a lambda
function:

1 add = lambda x, y: x+y

2 print(add(1,2))

In the first line of the code above, lambda is the keyword used to define an
anonymous function, the expression x, y represents the arguments separated
by a comma, and the expression x + y represents the operation performed
by the function. When this block of code is executed, the result is 3. Lambda
functions provide a compact way to define simple functions inline.

The following block of code shows how to use a lambda function to create
a list:

1 x = [( lambda x: math.sqrt(x))(i) for i in range (1,11)]

2 print(x)

The above code creates a list [
√
1,
√
2, . . . ,

√
10]. Executing the above block of

code gives the following output:

1 [1.0, 1.4142135623730951 , 1.7320508075688772 , 2.0,

2.23606797749979 , 2.449489742783178 ,

2.6457513110645907 , 2.8284271247461903 , 3.0,

3.1622776601683795]

1.7 File IO

Reading and writing files are fundamental tasks in any programming language.
Table 1.11 provides a list of commonly used functions for file handling in
Python. When opening a file, it is important to ensure that Python can locate
the file. This can be achieved by either placing the file in the working directory
or specifying the full path to the file as an argument in the open function.
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TABLE 1.11: Some functions for handling files.

Function Description

open Opens a file for reading or writing
close Closes an opened file
read Reads the content of an opened file
readline Reads a single line from an opened file
readlines Reads all lines from an opened file
write Writes a string to an opened file
writelines Writes a list of strings to an opened file

Suppose that we have a file named file.txt in the directory C:\Users\

gjgan\Documents\ResearchU\book\dcpython\code. The content of this file
is

1 Python is

2 a general purpose

3 programming language.

To read this file in Python, we can proceed as follows:

1 import os

2 fi = open(os.path.join(r"c:\users\gjgan\documents\researchu

\book\dcpython\code", "file.txt"), "r")

3 content = fi.read()

4 fi.close ()

5 print(content)

In the code above, we used the os package to combine the file path and the
file name. The symbol r before the path instructs Python to interpret the
string as a raw string. In a raw string, backslashes (\) are treated not as
escape sequences but as literal characters. Additionally, the argument ‘‘r’’
specifies that the file is opened in read mode, allowing the program to access
the file’s contents for reading. Executing the above block of code gives the
following output:

1 Python is

2 a general purpose

3 programming language.

When reading from or writing to a file is complete, it is important to
ensure the file is properly closed by calling the close function. However, to
avoid manually closing the file, we can use the with statement. This approach
automatically closes the file once the block of code within the with statement
is executed, ensuring proper file handling and reducing the risk of resource
leaks. The following block of code illustrates the use of the with statement:
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1 with open(os.path.join(r"c:\users\gjgan\documents\researchu

\book\dcpython\code", "file.txt"), "r") as fi:

2 content = fi.read()

3 print(content)

The read function reads the entire content of a file into a single string. If
we want to read the file into a list of lines, we can use the readlines function.
This function is particularly useful when we need to process or manipulate the
file content line by line. The following block of code illustrates the readlines
function:

1 with open(os.path.join(r"c:\users\gjgan\documents\researchu

\book\dcpython\code", "file.txt"), "r") as fi:

2 content = fi.readlines ()

3 print(content)

Executing the above block of code gives the following output:

1 ['Python is\n', 'a general purpose\n', 'programming
language.']

The symbol \n is the line break symbol.
Writing to a file can be performed in two distinct modes: overwriting the

existing content or appending to it. To overwrite a file, open it with the mode
argument ‘‘w’’. This will replace the file’s current content with the new
data. To append to a file, open it with the mode argument ‘‘a’’. This will
add new content to the end of the file without altering the existing content.
For example, the following block of code writes two lines to a file named
integers.txt:

1 with open(os.path.join(r"c:\users\gjgan\documents\researchu

\book\dcpython\code", "integers.txt"), "w") as fi:

2 fi.write(",".join([str(i) for i in range (1,6)]))

3 fi.write("\n")

4 fi.write(",".join([str(i) for i in range (6 ,11)]))

In the code above, the function str is a built-in function of Python that is used
to convert an object to a string. After executing the above block of code, we
can open the file integers.txt in a text editor and see the following content:

1 1,2,3,4,5

2 6,7,8,9,10
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1.8 Error handling

Python offers a mechanism to handle errors or exceptions that may occur
during program execution. This is accomplished using the try-except state-
ment. The try block contains the code that might raise an exception, while the
except block defines how to handle the exception if it occurs. This approach
ensures that the program can gracefully manage unexpected issues without
crashing.

The following block of code illustrates the use of the try-except state-
ment:

1 x = -2

2 try:

3 print(math.sqrt(x))

4 except ValueError as e:

5 print(str(e))

In the code above, ValueError is a built-in exception of Python. Executing
the above block of code in Spyder gives the following output:

1 math domain error

Python provides many built-in exceptions such as ValueError, TypeError,
RuntimeError, ZeroDivisionError, IndexError, etc. To raise an error man-
ually, we can use the keyword raise. The following block of code shows how
to raise an error manually:

1 def sqrt2(x):

2 if not isinstance(x, (int , float)):

3 raise ValueError("{} is not numeric".format(x))

4 elif x < 0:

5 raise ValueError("{} is negative".format(x))

6 else:

7 return(math.sqrt(x))

8

9 for x in [-2, 2, "a"]:

10 try:

11 print(sqrt2(x))

12 except ValueError as e:

13 print(str(e))

In the code above, we define a function called sqrt2. The function begins
by verifying whether the input is numeric and then checks if it is negative.
If the input satisfies both conditions, the function calculates and returns the
square root of the input. Executing the above block of code gives the following
output:
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1 -2 is negative

2 1.4142135623730951

3 a is not numeric

Handling exceptions ensures that the for loop completes all iterations. With-
out exception handling, the loop may terminate prematurely when an error
occurs.

1.9 Object-oriented programming

Python supports object-oriented programming (OOP), which is a program-
ming paradigm that uses objects to structure programs. An object models a
real-world entity and can contain data and methods. Object-oriented programs
are more maintainable and scalable than non-object-oriented programs.

In OOP, an object is instantiated from a class, which serves as a template
defining the attributes and behaviors shared by that type of object. OOP is
built on three core principles: encapsulation, inheritance, and polymorphism.
Encapsulation integrates data and methods into a single unit, the class, re-
stricting direct access to certain details. Inheritance allows a new class to
derive from an existing class, inheriting its data and methods. Polymorphism
enables a single interface to represent different underlying implementations,
allowing for flexible and dynamic behavior.

The following piece of code illustrates how to define classes in Python:

1 from abc import abstractmethod

2 class Algorithm:

3 def __init__(self , name):

4 self.name = name

5 @abstractmethod

6 def fit(self):

7 pass

8

9 class Kmean(Algorithm):

10 def fit(self):

11 return("Clustering by kmeans")

12

13 class Kmode(Algorithm):

14 def fit(self):

15 return("Clustering by kmodes")

16

17 alg1 = Kmean("algorithm 1")

18 alg2 = Kmode("algorithm 2")

19

20 print(alg1.fit())
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21 print(alg2.fit())

22 print(alg1.name)

23 print(alg2.name)

In the first line of the code above, we import the decorator @abstractmethod
from the package abc, which defines abstract base classes in Python. This
decorator is used to indicate that a method is an abstract method.

In Lines 2–7, we define a class with a property and an abstract method.
In Lines 9–15, we define two subclasses of the class Algorithm. The abstract
method in the parent class is implemented in the subclasses. In Lines 17–18,
we create objects of the two classes. In Lines 20–23, the method is called
and the property is displayed. Executing the above block of code gives the
following output:

1 Clustering by kmeans

2 Clustering by kmodes

3 algorithm 1

4 algorithm 2

In Python, the init method is a special method that serves as the
constructor of a class. It is used to initialize objects of a class. This method
is called immediately after an object is created.

1.10 Code Optimization

Unlike compiled languages such as C, C++, and Java, Python is a scripting
language. Consequently, its performance on certain computational tasks may
be slower compared to compiled languages. One way to enhance Python’s
performance is by using Cython, which allows Python code to be converted
into compiled C code with C data types.

To illustrate how to use Cython to compile Python code to binary code,
let us consider the calculation of the nth term of the Fibonacci sequence. The
Fibonacci sequence {xn}n≥1 is defined recursively as follows:

x1 = x2 = 1, xn = xn−1 + xn−2, n ≥ 3. (1.1)

In Python, we can define a nested function to calculate the nterm of the
Fibonacci sequence:

1 def fibo(n):

2 if n == 1 or n == 2:

3 return (1)

4 else:

5 return(fibo(n-1) + fibo(n-2))
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6

7 import time

8 beg = time.time()

9 print(fibo (40))

10 end = time.time()

11 print("Execution time: {:.4f} seconds".format(end - beg))

The nested function is defined in Lines 1–5 of the above block of code. The
function fibo calls itself repeatedly to calculate the nth term by using the
definition given in Equation (1.1). The code in Lines 7–11 is used to test the
performance of the nested function. Executing the above code in a laptop
computer produced the following output:

1 102334155

2 Execution time: 73.5849 seconds

From the output, we see that it took the nested function about 73.5849 seconds
to calculate the 40th term.

To improve the performance, we can convert the nested function in Python
to binary code. To do that, we need to create two Python files. The first file
is named fibonacci.py and contains the nested function:

1 def fibo(n):

2 if n == 1 or n == 2:

3 return (1)

4 else:

5 return(fibo(n-1) + fibo(n-2))

The second file is named setup.py and contains the following code:

1 from setuptools import setup

2 from Cython.Build import cythonize

3

4 setup(

5 ext_modules=cythonize("fibonacci.py"),

6 )

Suppose that the two files are saved to the working directory. Then we open
the Anaconda Prompt and change the directory to the working directory. To
compile the Python code, we execute the following commands in the Anaconda
Prompt:

1 conda activate dc

2 python setup.py build_ext --inplace

The first command is used to activate the Python environment dc, which
contains the Cython package (see Section 1.1). The second command does the
compilation. In Windows, the resulting compiled file is a .pyd file. In Linux,
the resulting compiled file is a .so file.
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Once the compiled file is created, we can use the nested function in Python
as follows:

1 import fibonacci

2 beg = time.time()

3 print(fibonacci.fibo (40))

4 end = time.time()

5 print("Execution time: {:.4f} seconds".format(end - beg))

Executing the above code in the same laptop produced the following output:

1 102334155

2 Execution time: 22.9853 seconds

From the output, we see that the compiled function was more than three times
faster than the pure Python function.

1.11 Summary

In this chapter, we introduced the fundamentals of Python programming. In
particular, we introduced data structures, operators, flow control statements,
user-defined functions, exception handling, and object-oriented programming.
For further readings, readers are referred to [12] and [172], which cover an
introduction to Python programming and its applications in machine learning.
For more information about object-oriented programming, readers are referred
to [235].
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2

The NumPy Library

NumPy stands for Numerical Python and is a fundamental library of Python
for scientific computing. It is extensively utilized in fields such as machine
learning and data science. In this chapter, we provide an introduction to
NumPy.

2.1 Arrays

An array is a data structure designed to store a collection of elements of the
same data type. Elements within an array can be efficiently accessed and
modified using their indices. NumPy offers a wide range of functions for cre-
ating and manipulating multidimensional arrays, making it a powerful tool
for scientific computing.

To use NumPy, we first need to install it. This can be done at the same
time when we create the Python environment (see Section 1.1). Once it is
installed, we can import it by executing the following code:

1 import numpy as np

In the above code, the as keyword is used to give numpy a different name np.
The short name makes the code more readable and concise.

In NumPy, the array function can be used to create arrays. For example,
the following piece of code creates three vectors:

1 v1 = np.array ([1, 2, 3])

2 v2 = np.array ([[1, 2, 3]])

3 v3 = np.array ([[1], [2], [3]])

4

5 print(v1.shape)

6 print(v2.shape)

7 print(v3.shape)

In the above code, v1 is a one-dimensional array, v2 is a row vector, and
v3 is a column vector. The shape property tells the dimension of the array.
Executing the above block of code in Spyder gives the following output:
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1 (3,)

2 (1, 3)

3 (3, 1)

The row vector and the column vector are special matrices.
The following block of code illustrates how to create 2-dimensional arrays:

1 m1 = np.array ([[1, 2], [3, 4]])

2 m2 = np.array(range(1, 5)).reshape ((2 ,2))

3

4 print(m1)

5 print(m2)

The first 2-dimensional array is created by specifying all the rows in a list. The
second 2-dimensional array is created by applying the reshape function to a
list. Executing the above block of code in Spyder gives the following output:

1 [[1 2]

2 [3 4]]

3 [[1 2]

4 [3 4]]

From the output, we see that the reshape function divides the list of numbers
into rows of numbers.

Creating high-dimensional arrays is similar as shown in the following block
of code:

1 t1 = np.array ([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

2 t2 = np.array(range(1, 9)).reshape ((2, 2, 2))

3

4 print(t1)

5 print(t1.shape)

6 print(t2)

7 print(t2.shape)

The output of the above block of code is

1 [[[1 2]

2 [3 4]]

3

4 [[5 6]

5 [7 8]]]

6 (2, 2, 2)

7 [[[1 2]

8 [3 4]]

9

10 [[5 6]

11 [7 8]]]

12 (2, 2, 2)
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The two arrays created above are 3-dimensional arrays. These high-
dimensional arrays are called tensors.

Multidimensional arrays can be converted to one-dimensional arrays by
using the flatten function. For example, the tensor t1 can be converted to
a one-dimensional array as follows:

1 print(t1.flatten ())

The output is

1 [1 2 3 4 5 6 7 8]

NumPy also provides functions to create special arrays such as arrays
with constant values. The following block of code illustrates the use of such
functions:

1 s1 = np.zeros ((2, 2))

2 s2 = np.ones((2, 2))

3 s3 = np.full((2, 2), 3)

4

5 print(s1)

6 print(s2)

7 print(s3)

The output of the above block of code is

1 [[0. 0.]

2 [0. 0.]]

3 [[1. 1.]

4 [1. 1.]]

5 [[3 3]

6 [3 3]]

The linspace function can be used to create arithmetic sequences. The
following block of code shows the usage of this function:

1 s4 = np.linspace(0, 1, 10)

2 s5 = np.linspace(1, 10, 10)

3 print(s4)

4 print(s5)

The output of the above block of code is

1 [0. 0.11111111 0.22222222 0.33333333 0.44444444

0.55555556

2 0.66666667 0.77777778 0.88888889 1. ]

3 [ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
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2.2 Array indexing and slicing

Selecting elements of an array can be done by indexing and slicing in the same
way as for a list. The methods given in Table 1.2 can be used for accessing
elements in arrays.

The following block of code illustrates various methods for selecting ele-
ments from a one-dimensional array:

1 v1 = np.array(range(1, 9))

2 print(v1)

3 print(v1[:]) # select all elements

4 print(v1 [:3]) # select elements with indices < 3

5 print(v1 [3:]) # select elements with indices >= 3

6 print(v1[3]) # select the element with index 3

7 print(v1[[0 ,2 ,4]]) # select elments with indices in [0,2,4]

8 print(v1[-1]) # select the last element

9 print(v1[-3:-1]) # select elements with indices -3, -2

10 print(v1[ -3:]) # select the last three elements

In the above code, how the meaning of each line is explained in the comment.
Executing the above block of code gives the following output:

1 [1 2 3 4 5 6 7 8]

2 [1 2 3 4 5 6 7 8]

3 [1 2 3]

4 [4 5 6 7 8]

5 4

6 [1 3 5]

7 8

8 [6 7]

9 [6 7 8]

The indices of a one-dimensional array are similar to those of a list. Let v
be a one-dimensional array with n elements. Then the indices of the elements
can be 0, 1, . . . , n − 1 or −n,−(n − 1), . . . ,−1. As a result, elements in an
array can be accessed by the method [start:stop:stride] (see Table 1.2).
If stride is positive, the elements are selected from left to right. If stride
is negative, the elements are selected from right to left. The value of stride
cannot be zero. The following block of code shows the use of this method for
selecting elements:

1 print(v1 [::1]) # select elements with indices 0,1,2,...

2 print(v1 [::2]) # select elements with indices 0, 2, 4, ...

3 print(v1[:: -1]) # select elements with indices -1, -2, ...

4 print(v1[0:: -1]) # select the element with index 0

5 print(v1[5:: -1]) # select elements with indices 5,4,...,0

6 print(v1[ -3::-1]) # select elements with indices -3,-4,...
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2.2 Array indexing and slicing

Selecting elements of an array can be done by indexing and slicing in the same
way as for a list. The methods given in Table 1.2 can be used for accessing
elements in arrays.

The following block of code illustrates various methods for selecting ele-
ments from a one-dimensional array:

1 v1 = np.array(range(1, 9))

2 print(v1)

3 print(v1[:]) # select all elements

4 print(v1 [:3]) # select elements with indices < 3

5 print(v1 [3:]) # select elements with indices >= 3

6 print(v1[3]) # select the element with index 3

7 print(v1[[0 ,2 ,4]]) # select elments with indices in [0,2,4]

8 print(v1[-1]) # select the last element

9 print(v1[-3:-1]) # select elements with indices -3, -2

10 print(v1[ -3:]) # select the last three elements

In the above code, how the meaning of each line is explained in the comment.
Executing the above block of code gives the following output:

1 [1 2 3 4 5 6 7 8]

2 [1 2 3 4 5 6 7 8]

3 [1 2 3]

4 [4 5 6 7 8]

5 4

6 [1 3 5]

7 8

8 [6 7]

9 [6 7 8]

The indices of a one-dimensional array are similar to those of a list. Let v
be a one-dimensional array with n elements. Then the indices of the elements
can be 0, 1, . . . , n − 1 or −n,−(n − 1), . . . ,−1. As a result, elements in an
array can be accessed by the method [start:stop:stride] (see Table 1.2).
If stride is positive, the elements are selected from left to right. If stride
is negative, the elements are selected from right to left. The value of stride
cannot be zero. The following block of code shows the use of this method for
selecting elements:

1 print(v1 [::1]) # select elements with indices 0,1,2,...

2 print(v1 [::2]) # select elements with indices 0, 2, 4, ...

3 print(v1[:: -1]) # select elements with indices -1, -2, ...

4 print(v1[0:: -1]) # select the element with index 0

5 print(v1[5:: -1]) # select elements with indices 5,4,...,0

6 print(v1[ -3::-1]) # select elements with indices -3,-4,...
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The output of the above block of code is

1 [1 2 3 4 5 6 7 8]

2 [1 3 5 7]

3 [8 7 6 5 4 3 2 1]

4 [1]

5 [6 5 4 3 2 1]

6 [6 5 4 3 2 1]

Selecting elements from a two-dimensional array requires two coordi-
nates. The following block of code shows how to select elements from a two-
dimensional array:

1 m1 = np.array(range (1,9)).reshape ((2 ,4))

2

3 print(m1)

4 print(m1[:,1]) # select the second column

5 print(m1[0,:]) # select the first row

6 print(m1[1,::-1]) # select the second row reversed

7 print(m1[0 ,[1 ,3]]) # select the first row and the second ,

fourth columns

The output of the above block of code is

1 [[1 2 3 4]

2 [5 6 7 8]]

3 [2 6]

4 [1 2 3 4]

5 [8 7 6 5]

6 [2 4]

2.3 Views and copies

In NumPy, the array data structure consists of two parts: the contiguous data
buffer that stores the actual data elements and the metadata that contains
information (e.g., data type, shape) about the data buffer. To improve perfor-
mance, NumPy often uses views rather than copies when operating on arrays.
A view of an array is a way of looking at the data by changing certain meta-
data of the array without changing the actual data buffer. A copy of an array
is a duplication of the data buffer and the metadata. Changes made to a view
of an array will reflect in the original array. However, changes made to a copy
of an array will not affect the original array.

NumPy has certain rules about whether to create a view or a copy. When
elements in a selection of an array can be addressed by offsets and strides in
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the original array, a view will be created. The following block of code shows
that views are created:

1 m = np.array(range (1,7)).reshape ((3,2))

2

3 print(m)

4 v1 = m[0:2,] # this is a view

5 v1[0, 1] = -1

6 print(np.may_share_memory(v1 , m))

7 print(m)

8

9 v2 = m[0:3:2 ,] # this is a view

10 v2[0, 1] = -2

11 print(np.may_share_memory(v2 , m))

12 print(m)

In the above code, we select subsets from an array and make changes to the
subsets. We use the NumPy function may share memory to check whether the
subsets share memory with the original array. Executing the above block of
code in Spyder gives the following output:

1 [[1 2]

2 [3 4]

3 [5 6]]

4 True

5 [[ 1 -1]

6 [ 3 4]

7 [ 5 6]]

8 True

9 [[ 1 -2]

10 [ 3 4]

11 [ 5 6]]

From the output, we see that views were created and changes made to the
views were reflected in the original array.

In NumPy, advanced indexing always creates copies. The following block
of code illustrates this:

1 m = np.array(range (1,7)).reshape ((3,2))

2

3 print(m)

4 c1 = m[[0 ,2] ,:] # this is a copy

5 c1[0, 1] = -1

6 print(np.may_share_memory(v1 , m))

7 print(m)
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the original array, a view will be created. The following block of code shows
that views are created:

1 m = np.array(range (1,7)).reshape ((3,2))

2
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4 v1 = m[0:2,] # this is a view

5 v1[0, 1] = -1
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8
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In the above code, we select subsets from an array and make changes to the
subsets. We use the NumPy function may share memory to check whether the
subsets share memory with the original array. Executing the above block of
code in Spyder gives the following output:

1 [[1 2]

2 [3 4]

3 [5 6]]

4 True

5 [[ 1 -1]

6 [ 3 4]

7 [ 5 6]]

8 True

9 [[ 1 -2]

10 [ 3 4]

11 [ 5 6]]

From the output, we see that views were created and changes made to the
views were reflected in the original array.

In NumPy, advanced indexing always creates copies. The following block
of code illustrates this:

1 m = np.array(range (1,7)).reshape ((3,2))

2

3 print(m)

4 c1 = m[[0 ,2] ,:] # this is a copy

5 c1[0, 1] = -1

6 print(np.may_share_memory(v1 , m))

7 print(m)
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Executing the above block of code gives the following output:

1 [[1 2]

2 [3 4]

3 [5 6]]

4 False

5 [[1 2]

6 [3 4]

7 [5 6]]

From the output, we see that the change made to the copy did not change the
original array.

Additionally, we can use the base attribute to check whether an array is
a view or a copy of another array. The following block of code illustrates this:

1 m = np.array(range (1,7)).reshape ((3,2))

2 v1 = m[0:2,]

3 c1 = m[[0,1],]

4 print(v1.base)

5 print(c1.base)

The output of the above block of code is

1 [1 2 3 4 5 6]

2 None

If the base attribute is None, then it is a copy.

2.4 Array operations

We can perform numerical operations on NumPy arrays. For example, we can
apply the arithmetic operators described in Section 1.4 on NumPy arrays. All
the operations are element-wise. The following block of code illustrates these
operations on NumPy arrays:

1 m1 = np.array(range (1,5)).reshape ((2 ,2))

2 m2 = np.array(range (5,9)).reshape ((2 ,2))

3

4 print(m1 + m2)

5 print(m1 - m2)

6 print(m1 * m2)

7 print(m1 / m2)

8 print(m1 ** m2)

9 print(m1 + 2)

10 print(m1 ** 2)
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Executing the above block of code in Spyder gives the following output:

1 [[ 6 8]

2 [10 12]]

3 [[-4 -4]

4 [-4 -4]]

5 [[ 5 12]

6 [21 32]]

7 [[0.2 0.33333333]

8 [0.42857143 0.5 ]]

9 [[ 1 64]

10 [ 2187 65536]]

11 [[3 4]

12 [5 6]]

13 [[ 1 4]

14 [ 9 16]]

If two arrays have the same shape, then it is straightforward to perform
arithmetic operations on them. If two arrays have different shapes, operations
can still be applied to them if the large array is a multiply of the short ar-
ray. This is the broadcasting feature of NumPy. The following block of code
illustrates this feature:

1 m1 = np.array(range(1, 9)).reshape ((2 ,4))

2 v1 = np.array(range(1, 5))

3

4 print(m1)

5 print(v1)

6 print(m1 + v1)

The array v1 and the array m1 have different shapes. However, the small array
will be repeated to match the large array. The output of the above block of
code is

1 [[1 2 3 4]

2 [5 6 7 8]]

3 [1 2 3 4]

4 [[ 2 4 6 8]

5 [ 6 8 10 12]]

2.5 Functions

NumPy provides a rich set of functions that can be used on arrays. These
functions include mathematical functions, statistical functions, and functions
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If two arrays have the same shape, then it is straightforward to perform
arithmetic operations on them. If two arrays have different shapes, operations
can still be applied to them if the large array is a multiply of the short ar-
ray. This is the broadcasting feature of NumPy. The following block of code
illustrates this feature:

1 m1 = np.array(range(1, 9)).reshape ((2 ,4))

2 v1 = np.array(range(1, 5))

3

4 print(m1)

5 print(v1)

6 print(m1 + v1)

The array v1 and the array m1 have different shapes. However, the small array
will be repeated to match the large array. The output of the above block of
code is

1 [[1 2 3 4]

2 [5 6 7 8]]

3 [1 2 3 4]

4 [[ 2 4 6 8]

5 [ 6 8 10 12]]

2.5 Functions

NumPy provides a rich set of functions that can be used on arrays. These
functions include mathematical functions, statistical functions, and functions
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used for sorting, searching, and counting. In this section, we introduce a few
functions provided by NumPy. For a complete list of functions provided by
NumPy, readers are referred to the NumPy API reference at https://numpy.
org/.

NumPy provides functions for generating random numbers, which are im-
portant for statistical modeling and simulation. The following block of code
shows how to generate random numbers from different distributions:

1 rng = np.random.default_rng ()

2

3 v1 = rng.random (10) # generate 10 random numbers from the

uniform distribution on [0,1)

4 v2 = rng.standard_normal (10) # generate 10 random numbers

from the standard normal distribution

5 v3 = rng.integers(0, 100, 10) # generate 10 random integers

from {0,1,... ,99}

6

7 print(v1)

8 print(v2)

9 print(v3)

The three random number generation functions are commonly used in prac-
tice. The first function random generates uniformly distributed random num-
bers. The second function standard normal generates random numbers from
the standard normal distribution, which has a mean of zero and a standard
deviation of one. The third function generates random integers from an inter-
val [L,H). The low end of the interval is inclusive and the upper end of the
interval is exclusive. The output of executing the above block of code looks
like:

1 [0.90658443 0.99689331 0.22248615 0.06889595 0.09038821

0.99628482

2 0.66239361 0.87383429 0.83905642 0.14733118]

3 [ -0.7599299 -1.09448303 1.36601884 -1.98679173

-0.19144456 -0.56262858

4 -0.64179878 -0.88431171 0.24020192 -1.29943219]

5 [88 67 55 81 36 98 29 85 97 82]

Note that you will see different outputs when you run the above block of code
again. To repeat the random numbers, we need to fix a seed for the random
number generator.

To fix the seed for the default random number generator, we can call the
function as follows:

1 rng = np.random.default_rng(seed =2024)

2 print(rng.random (5))

3 rng = np.random.default_rng(seed =2024)

4 print(rng.random (5))

https://numpy.org
https://numpy.org
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In the above code, we set the seed of the random number generator to be the
same in two calls. If we execute the above block of code in Spyder, we see the
following output:

1 [0.67583134 0.2143232 0.30945203 0.7994661 0.9958021 ]

2 [0.67583134 0.2143232 0.30945203 0.7994661 0.9958021 ]

From the output, we see that the outputs from the two calls are the same.
You should be able to repeat the above outputs by executing the same block
of code given above.

Some commonly used statistical functions are provided by NumPy. The
following block of code illustrates the use of these statistical functions:

1 rng = np.random.default_rng(seed =1)

2 y = rng.standard_normal (1000)

3 print("97.5% percentile:", np.percentile(y, 97.5))

4 print("0.975 quantile:", np.quantile(y, 0.975))

5 print("min:", np.min(y))

6 print("median:", np.median(y))

7 print("max:", np.max(y))

8 print("mean:", np.mean(y))

9 print("std:", np.std(y))

In the above block of code, we generate an array of 1000 random numbers
from the standard normal distribution and calculate summary statistics. The
output of the code is given below:

1 97.5% percentile: 1.8609122904322217

2 0.975 quantile: 1.8609122904322217

3 min: -3.5488049709979372

4 median: -0.032839126821055185

5 max: 3.7516349672663583

6 mean: -0.05425322276336561

7 std: 0.9862611378496257

From the output, we see that the two functions percentile and quantile

produce the same result if we supply the correct argument values.
NumPy also provides functions for sorting, searching, and counting. For

example, the following block of code shows how to sort and search elements
of arrays:

1 rng = np.random.default_rng(seed =1)

2 y = rng.standard_normal (5)

3

4 print(y)

5 print(np.sort(y))

6 print(np.argsort(y))
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In the above code, we set the seed of the random number generator to be the
same in two calls. If we execute the above block of code in Spyder, we see the
following output:

1 [0.67583134 0.2143232 0.30945203 0.7994661 0.9958021 ]

2 [0.67583134 0.2143232 0.30945203 0.7994661 0.9958021 ]

From the output, we see that the outputs from the two calls are the same.
You should be able to repeat the above outputs by executing the same block
of code given above.

Some commonly used statistical functions are provided by NumPy. The
following block of code illustrates the use of these statistical functions:

1 rng = np.random.default_rng(seed =1)

2 y = rng.standard_normal (1000)

3 print("97.5% percentile:", np.percentile(y, 97.5))

4 print("0.975 quantile:", np.quantile(y, 0.975))

5 print("min:", np.min(y))

6 print("median:", np.median(y))

7 print("max:", np.max(y))

8 print("mean:", np.mean(y))

9 print("std:", np.std(y))

In the above block of code, we generate an array of 1000 random numbers
from the standard normal distribution and calculate summary statistics. The
output of the code is given below:

1 97.5% percentile: 1.8609122904322217

2 0.975 quantile: 1.8609122904322217

3 min: -3.5488049709979372

4 median: -0.032839126821055185

5 max: 3.7516349672663583

6 mean: -0.05425322276336561

7 std: 0.9862611378496257

From the output, we see that the two functions percentile and quantile

produce the same result if we supply the correct argument values.
NumPy also provides functions for sorting, searching, and counting. For

example, the following block of code shows how to sort and search elements
of arrays:

1 rng = np.random.default_rng(seed =1)

2 y = rng.standard_normal (5)

3

4 print(y)

5 print(np.sort(y))

6 print(np.argsort(y))
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The sort function sorts an array in an increasing order and returns the sorted
array. The argsort function returns an array of indices instead of the values.
The output of the above block of code is

1 [ 0.34558419 0.82161814 0.33043708 -1.30315723

0.90535587]

2 [ -1.30315723 0.33043708 0.34558419 0.82161814

0.90535587]

3 [3 2 0 1 4]

If we just need to know the maximum value, the minimum value, and their
indices, we can use the functions max, min, argmax, and argmin as shown in
the following block of code:

1 rng = np.random.default_rng(seed =2)

2 y = rng.standard_normal (5)

3

4 print(y)

5 print(np.max(y))

6 print(np.argmax(y))

7 print(np.min(y))

8 print(np.argmin(y))

The output of the code is

1 [ 0.18905338 -0.52274844 -0.41306354 -2.44146738

1.79970738]

2 1.799707382720902

3 4

4 -2.4414673826398556

5 3

2.6 Matrices

Matrices are special two-dimensional arrays. NumPy provides many functions
for matrix calculations. Creating a matrix can be done by using the matrix

function on a two-dimensional array. The following block of code illustrates
the difference of NumPy arrays and matrices:

1 m1 = np.array ([1, 0.1, 0.1, 1]).reshape ((2 ,2))

2 m2 = np.matrix(m1)

3

4 print(type(m1))

5 print(type(m2))

6
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7 print(m1 * m1) # element -wise multiplication

8 print(m2 * m2) # matrix multiplication

9 print(m1 @ m1) # matrix multiplication

10 print(m2 @ m2) # matrix multiplication

Executing the above block of code in Spyder gives the following output:

1 <class 'numpy.ndarray '>
2 <class 'numpy.matrix '>
3 [[1. 0.01]

4 [0.01 1. ]]

5 [[1.01 0.2 ]

6 [0.2 1.01]]

7 [[1.01 0.2 ]

8 [0.2 1.01]]

9 [[1.01 0.2 ]

10 [0.2 1.01]]

From the output, we see that the multiplication operator * is interpreted
differently for arrays and matrices. However, the operator @ is interpreted as
matrix multiplication for both arrays and matrices.

The following block of code shows some examples of the matrix functions:

1 v = np.array(range (1,5))

2 m = v.reshape ((2,2))

3

4 print("diag:", np.diag(m))

5 print("lower triangle :\n", np.tril(m))

6 print("upper triangle :\n", np.triu(m))

7 print("transpose :\n", np.transpose(m))

8 print("rank:", np.linalg.matrix_rank(m))

9 print("norm of v:", np.linalg.norm(v))

10 print("norm of m:", np.linalg.norm(m))

11 print("trace:", np.linalg.trace(m))

Executing the block of code gives the following output:

1 diag: [1 4]

2 lower triangle:

3 [[1 0]

4 [3 4]]

5 upper triangle:

6 [[1 2]

7 [0 4]]

8 transpose:

9 [[1 3]

10 [2 4]]

11 rank: 2

12 norm of v: 5.477225575051661
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7 print(m1 * m1) # element -wise multiplication

8 print(m2 * m2) # matrix multiplication

9 print(m1 @ m1) # matrix multiplication

10 print(m2 @ m2) # matrix multiplication

Executing the above block of code in Spyder gives the following output:
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From the output, we see that the multiplication operator * is interpreted
differently for arrays and matrices. However, the operator @ is interpreted as
matrix multiplication for both arrays and matrices.

The following block of code shows some examples of the matrix functions:

1 v = np.array(range (1,5))

2 m = v.reshape ((2,2))

3

4 print("diag:", np.diag(m))

5 print("lower triangle :\n", np.tril(m))

6 print("upper triangle :\n", np.triu(m))

7 print("transpose :\n", np.transpose(m))

8 print("rank:", np.linalg.matrix_rank(m))

9 print("norm of v:", np.linalg.norm(v))

10 print("norm of m:", np.linalg.norm(m))
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Executing the block of code gives the following output:

1 diag: [1 4]

2 lower triangle:

3 [[1 0]
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8 transpose:
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10 [2 4]]

11 rank: 2
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13 norm of m: 5.477225575051661

14 trace: 5

Most of the functions are straightforward to understand. The norm function
can calculate different norms. The default norm is the Frobenius norm, which
is defined to be the square root of the sum of the squared elements of an array.

NumPy has functions for solving linear equation systems. Consider the
following linear equation system

x− 2y + 3z = 7,

2x+ y + z = 4,

−3x+ 2y − 2z = −10.

This linear equation system can be solved by NumPy functions as follows:

1 A = np.matrix(np.array([1, -2, 3, 2, 1, 1, -3, 2, -3]).

reshape ((3 ,3)))

2 b = np.matrix(np.array([7, 4, -10]).reshape ((3,1)))

3 x = np.linalg.solve(A, b)

4

5 print(x)

6 print(A * x)

Executing the above block of code gives the following output:

1 [[ 1.5]

2 [ -0.5]

3 [ 1.5]]

4 [[ 7.]

5 [ 4.]

6 [ -10.]]

The above simple linear equation system can also be solved by multiplying
the inverse of the coefficient matrix and the constant vector. The following
block of code shows this approach:

1 invA = np.linalg.inv(A)

2 print(invA * b)

Executing the above block of code gives the solution:

1 [[ 1.5]

2 [ -0.5]

3 [ 1.5]]
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2.7 File IO

NumPy offers many functions for saving arrays to files and loading arrays
from files. In particular, the files can be text files, binary files, or compressed
files.

The following block of code shows how to save an array to a text file and
load the array from the text file:

1 rng = np.random.default_rng(seed =1)

2 dat = np.array(rng.standard_normal (10000)).reshape

((1000 ,10))

3

4 np.savetxt("dat.csv", dat , fmt="%.8f", delimiter=",")

5 dat2 = np.loadtxt("dat.csv", dtype=float , delimiter=",")

6 print(np.linalg.norm(dat2 -dat))

In the above code, we create a random two-dimensional array, which contains
1000 rows and 10 columns. The savetxt function is called to save the array to
a text file. All numbers are rounded to eight decimal places. Then the loadtxt
function is called to load the array from the file. In the last line, the norm of
the difference between the original array and the array loaded from the file is
calculated. Executing the block of code gives the following output:

1 2.863391613525999e-07

The result shows that the array recovered from the file is almost the same as
the original array.

Saving a large array to a text file may not be desirable as the file size
can be large. NumPy provides functions to save arrays to binary files. The
following block of code shows how to save the above array to a binary file and
load the array from the file:

1 np.save("dat.npy", dat)

2 dat3 = np.load("dat.npy")

3 print(np.linalg.norm(dat3 -dat))

The binary file has the .npy extension. Executing the above block of code
gives the following output:

1 0.0

The result shows that the recovered array is exactly the same as the original
array. In addition, the size of the binary file is smaller than that of the text
file.
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can be large. NumPy provides functions to save arrays to binary files. The
following block of code shows how to save the above array to a binary file and
load the array from the file:

1 np.save("dat.npy", dat)

2 dat3 = np.load("dat.npy")

3 print(np.linalg.norm(dat3 -dat))

The binary file has the .npy extension. Executing the above block of code
gives the following output:

1 0.0

The result shows that the recovered array is exactly the same as the original
array. In addition, the size of the binary file is smaller than that of the text
file.
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2.8 Code optimization

NumPy arrays are faster than Python lists for the following reasons. First,
NumPy arrays are homogeneous data structures. A NumPy array contains
data with the same data type. Second, the data contained in a NumPy ar-
ray are stored in contiguous memory blocks. Third, most NumPy operations
are written in the C language and are compiled. Since Python is a scripting
language, there are still strategies to improve the performance of NumPy code.

The first strategy is to use vectorization over loops. To illustrate this, let
us consider calculating the following sum:

1000000∑
i=1

1√
i
.

We can use a loop or the sum function provided by NumPy to calculate the
sum. The following block of code shows the performance of the two approaches:

1 import timeit

2

3 mysetup = "from math import sqrt"

4 mycode = '''
5 dSum = 0

6 for i in range (1 ,1000001):

7 dSum += 1/sqrt(i)

8 '''
9 print(timeit.timeit(setup=mysetup , stmt=mycode , number =100)

)

10

11 mysetup2 = "import numpy as np"

12 mycode2 = '''
13 dSum = np.sum(np.reciprocal(np.sqrt(np.r_ [1:1000001])))

14 '''
15 print(timeit.timeit(setup=mysetup2 , stmt=mycode2 , number

=100))

In the above code, we use the Python package timeit to measure the execution
time of the two approaches. Executing the above block of code in Spyder, we
see the following output:

1 29.838358900044113

2 2.259695300133899

From the results, we see that it took the loop about 29.84 seconds to calculate
the sum 100 times. For the second approach that uses vectorization, it only
took about 2.26 seconds to calculate the sum 100 times. The vectorization
approach is much faster than the loop.
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The second strategy is to use the broadcasting feature of NumPy. The
broadcasting feature allows numerical operations to be performed on arrays
with different shapes. NumPy’s broadcasting rules are based on comparing the
shapes of two arrays. Let (a1, a2, . . . , am) and (b1, b2, . . . , bn) be the shapes of
two arrays. When the two arrays have the same number of dimensions (i.e.,
n = m), the two arrays are broadcastable if bj = aj or min{aj , bj} = 1 for
all j = 1, 2, . . . , n. In other words, two dimensions are compatible if they are
equal or one of them is one. When the two arrays have different dimensions
(i.e., n ̸= m), the missing dimensions of the small array will be assumed to be
one in the following way. Suppose that m < n. Then the shape (a1, a2, . . . , am)
will be extended to

(1, . . . , 1︸ ︷︷ ︸
n−m

, a1, a2, . . . , am),

which has the size of n. Then the aforementioned rule will be applied. That
is, the two arrays are broadcastable if bj = aj−n+m or min{bj , aj−n+m} = 1
for all j = n, n− 1, . . . , n−m+ 1.

NumPy’s broadcasting rules are different from those of R. For example,
we cannot add the two arrays [1, 2, 3, 4] and [1, 2] in NumPy. However, we can
add them in R.

The following block of code illustrates NumPy’s broadcasting feature:

1 a1 = np.array(range (1,9)).reshape ((2,2,2))

2 a2 = np.array(range (1,5)).reshape ((2 ,2))

3

4 print(a1)

5 print(a2)

6 print(a1+a2)

The output of the above code is

1 [[[1 2]

2 [3 4]]

3

4 [[5 6]

5 [7 8]]]

6 [[1 2]

7 [3 4]]

8 [[[ 2 4]

9 [ 6 8]]

10

11 [[ 6 8]

12 [10 12]]]
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2.9 Summary

NumPy is the fundamental package of Python for scientific computing and is
widely used in the fields of machine learning and data science. In this chapter,
we presented an introduction to the NumPy package, including array creation,
array indexing and slicing, and array operations. For more information about
NumPy, readers are referred to the NumPy’s API reference and [172].
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The Pandas Library

The Pandas library is a popular Python library built on NumPy and is de-
signed to work with tabular data. In this chapter, we introduce the data
structures of Pandas and some functions for manipulating data.

3.1 Pandas series

Pandas provides two basic data structures: series and data frames. A series is
a one-dimensional labeled array that can hold data of any type. A data frame
is a two-dimensional array that looks like a table with rows and columns. In
this section, we introduce the first data structure.

To create a series, we use the Series function provided in Pandas. The
following piece of code shows how to create a series:

1 import pandas as pd

2 import numpy as np

3

4 s1 = pd.Series ([3.14 , "str", True , np.array ([1 ,2]), np.nan

])

5 print(s1)

The series created in the above code contains five elements that have different
data types. Executing the above piece of code in Spyder gives the following
output:

1 0 3.14

2 1 str

3 2 True

4 3 [1, 2]

5 4 NaN

6 dtype: object

The default indices of the elements in a series start from 0.
We can supply indices when creating a series. For example, we can provide

the index to a series as follows:
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1 s2 = pd.Series ([3.14 , "str", True , np.array ([1 ,2]), np.nan

], index=["a", "b", "c", "d", "e"])

2 print(s2)

Executing the above code gives the following output:

1 a 3.14

2 b str

3 c True

4 d [1, 2]

5 e NaN

6 dtype: object

A series can be created from a dictionary. The following piece of code
shows this method:

1 s3 = pd.Series ({0: 3.14, 1: "str", 2: True , 3: np.array

([1 ,2]), 4: np.nan})

2 print(s3)

The output of the above code is

1 0 3.14

2 1 str

3 2 True

4 3 [1, 2]

5 4 NaN

6 dtype: object

The values and the indices of a series can be accessed by the attributes
values and index, respectively. The following code shows the use of the two
attributes:

1 s1.values

2 s1.index

Executing the above code line by line in Spyder gives the following output:

1 In [665]: s1.values

2 Out [665]: array ([3.14 , 'str', True , array ([1, 2]), nan],

dtype=object)

3

4 In [666]: s1.index

5 Out [666]: RangeIndex(start=0, stop=5, step =1)

Selecting elements of a series can be done by using the index and the slicing
methods used for lists (see Table 1.2). If the indices of a series are continuous
integers starting from 0, then we can use the slicing method for a series in
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the same way as for a list. The series s1 created above has indices that are
continuous integers starting from 0. The following code shows how to select
elements from s1:

1 print(s1[0]) # get the first element

2 print(s1 [:3]) # get the first three elements

3 print(s1 [0:4:2]) # get elements at indices 0, 2

4 print(s1[-1:-4:-2]) # get elements at positions -1, -3

Executing the above block of code gives the following output:

1 3.14

2 0 3.14

3 1 str

4 2 True

5 dtype: object

6 0 3.14

7 2 True

8 dtype: object

9 4 NaN

10 2 True

11 dtype: object

If a series does not use continuous integers as indices, then we need to use
the slicing method along with the indices to select elements from the series.
The following block of code shows how to select elements from s2:

1 print(s2[s2.index [0]]) # get the first element

2 print(s2[s2.index [:3]]) # get the first three elements

3 print(s2[s2.index [0:4:2]]) # get elements at index[0],

index [2]

4 print(s2[-1:-4:-2]) # get elements at positions -1, -3

5 print(s2[s2.index [ -1: -4: -2]]) # get elements at index[0],

index [2]

Executing the above block of code in Spyder gives the following output:

1 3.14

2 a 3.14

3 b str

4 c True

5 dtype: object

6 a 3.14

7 c True

8 dtype: object

9 e NaN

10 c True

11 dtype: object

12 e NaN

13 c True

14 dtype: object
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It is interesting to see that negative integers are treated as positions.
To use integer positions to select elements from a series, we can use the

iloc attribute of the series. The following block of code shows how to use the
iloc attribute to select elements:

1 print(s2.iloc [0]) # get the first element

2 print(s2.iloc [:3]) # get the first three elements

3 print(s2.iloc [0:4:2]) # get elements at indices 0, 2

4 print(s2.iloc [-1:-4:-2]) # get elements at indices -1, -3

Executing the above block of code gives the following output:

1 3.14

2 a 3.14

3 b str

4 c True

5 dtype: object

6 a 3.14

7 c True

8 dtype: object

9 e NaN

10 c True

11 dtype: object

The iloc attribute used above uses implicit indexing. The loc attribute
uses explicit indexing. The following code illustrates the use of the loc at-
tribute to select elements:

1 print(s2.loc["d"]) # get the element with index d

2 print(s2.loc[["a", "b"]]) # get the elements with indices a

, b

Executing the above block of code gives the following output:

1 [1 2]

2 a 3.14

3 b str

4 dtype: object

3.2 Pandas data frames

In Pandas, a data frame is a two-dimensional data structure where both rows
and columns are indexed and labeled. The Pandas data frame is more general
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than the data frame in the R language. In R, a column of a data frame contains
the same type of data. In Pandas, a column of a data frame can have different
types of data.

A data frame can be created in various ways. It can be created from a
dictionary of collections (e.g., series, NumPy one-dimensional arrays, lists)
and a NumPy two-dimensional array. The following piece of code shows how
to create a data frame from a dictionary of series:

1 dic = {

2 "V1": pd.Series ([1, 2, 3], index=["r1", "r2", "r3"])

,

3 "V2": pd.Series (["str", [0, 1], np.nan], index=["r1"

, "r2", "r3"])

4 }

5 df = pd.DataFrame(dic)

6 print(df)

Executing the above block of code gives the following output:

1 V1 V2

2 r1 1 str

3 r2 2 [0, 1]

4 r3 3 NaN

The row indices of the resulting data frame are the union of the indices of the
series in the input dictionary. In the above example, the series in the dictionary
have the same indices. The following piece of code gives an example when the
series have different indices:

1 dic2 = {

2 "V1": pd.Series ([1, 2, 3], index=["r1", "r2", "r3"])

,

3 "V2": pd.Series (["str", [0, 1], np.nan], index=["r4"

, "r5", "r6"])

4 }

5 df2 = pd.DataFrame(dic2)

6 print(df2)

Executing the above block of code gives the following output:

1 V1 V2

2 r1 1.0 NaN

3 r2 2.0 NaN

4 r3 3.0 NaN

5 r4 NaN str

6 r5 NaN [0, 1]

7 r6 NaN NaN
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From the output, we see that missing values are used to fill the data frame
when a series does not have certain indices.

The following block of code shows how to create a data frame from a
NumPy two-dimensional array:

1 dat = np.array(range (1,9)).reshape ((4 ,2))

2 rownames = ["r1", "r2", "r3", "r4"]

3 colnames = ["V1", "V2"]

4 df3 = pd.DataFrame(dat , index=rownames , columns=colnames)

5 print(df3)

The output of the above block of code is

1 V1 V2

2 r1 1 2

3 r2 3 4

4 r3 5 6

5 r4 7 8

In the above example, row labels are set by using the index argument and
column labels are set by using the columns argument. The column labels
and the row labels can be accessed by the attributes columns and index,
respectively. The following code shows how to get these labels of df3:

1 print(df3.columns)

2 print(df3.index)

Executing the above code gives the following output:

1 Index(['V1', 'V2'], dtype='object ')
2 Index(['r1', 'r2', 'r3', 'r4'], dtype='object ')

Accessing elements of a data frame can be done by using explicit indices or
implicit indices. The following block of code illustrates how to select elements
from a data frame:

1 print(df3["V1"]) # get column V1

2 print(df3[["V1", "V1"]]) # get column V1 twice

3 print(df3.loc[["r1", "r3"], "V2"]) # get specified rows and

columns by explicint indices

4 print(df3.iloc [[0,2], 1]) # get specified rows and columns

by implicit indices

Executing the above block of code in Spyder gives the following output:

1 r1 1

2 r2 3

3 r3 5

4 r4 7

5 Name: V1, dtype: int64
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6 V1 V1

7 r1 1 1

8 r2 3 3

9 r3 5 5

10 r4 7 7

11 r1 2

12 r3 6

13 Name: V2, dtype: int64

14 r1 2

15 r3 6

16 Name: V2, dtype: int64

Elements can also be selected based on some criteria. For example, the
following code shows how to select elements by criterion:

1 print(df3[df3["V1"] > 3])

2 print(df3[df3.V1 > 3])

The output of executing the above code is

1 V1 V2

2 r3 5 6

3 r4 7 8

4 V1 V2

5 r3 5 6

6 r4 7 8

3.3 Views and copies

Since Pandas data structures depend on NumPy arrays, operations on Pandas
series and data frames may return views instead of copies of the original data
(see Section 2.3). However, NumPy is more consistent and predictable than
Pandas in creating views. In NumPy, changes in views are reflected in the
original array. In Pandas, changes in views might not always reflect in the
original data.

To address the unpredictable behavior of creating views, Pandas has pro-
vided the copy-on-write mechanism since version 1.5. The following block of
code illustrates the case when this feature is turned off:

1 pd.set_option("mode.copy_on_write", False)

2

3 m = pd.DataFrame ({"a": range(1, 4), "b": range(4, 7)})

4

5 print(m)



56 The Pandas Library
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6 v1 = m.iloc [0:2, ]

7 print(v1._is_view)

8 print(v1._is_copy)

9 v1.iloc [0,1] = -1

10 print(m)

Executing the above block of code gives the following output:

1 a b

2 0 1 4

3 1 2 5

4 2 3 6

5 True

6 <weakref at 0x000002936B843C40; to 'DataFrame ' at 0

x00000293687D44D0 >

7 a b

8 0 1 -1

9 1 2 5

10 2 3 6

11 C:\ Users\gjgan\AppData\Local\Temp\ipykernel_21832

\3244611799. py:9: SettingWithCopyWarning:

12 A value is trying to be set on a copy of a slice from a

DataFrame

13

14 See the caveats in the documentation: https :// pandas.pydata

.org/pandas -docs/stable/user_guide/indexing.html#

returning -a-view -versus -a-copy

15 v1.iloc [0,1] = -1

From the output, we see that v1 is a view. Changing the view changed the orig-
inal data m. However, Pandas raised the warning SettingWithCopyWarning.

To fix the warning, we can set the copy-on-write feature to be true. The
following block of code illustrates this case:

1 pd.set_option("mode.copy_on_write", True)

2

3 m = pd.DataFrame ({"a": range(1, 4), "b": range(4, 7)})

4

5 print(m)

6 v1 = m.iloc [0:2, ]

7 print(v1._is_view)

8 print(v1._is_copy)

9 v1.iloc [0,1] = -1

10 print(v1._is_view)

11 print(v1._is_copy)

12 print(m)
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Executing the above block of code gives the following output:

1 a b

2 0 1 4

3 1 2 5

4 2 3 6

5 True

6 <weakref at 0x000002936B843290; to 'DataFrame ' at 0

x00000293687D6150 >

7 False

8 <weakref at 0x000002936B843290; to 'DataFrame ' at 0

x00000293687D6150 >

9 a b

10 0 1 4

11 1 2 5

12 2 3 6

From the output, we see that v1 was a view of the original data. After a
change was made to v1, v1 was converted into a copy. The original data was
not affected. When the copy-on-write feature was set to be true, the warning
SettingWithCopyWarning was not raised.

3.4 Data manipulation

Pandas provides many functions for manipulating data frames. In this section,
we introduce some commonly used function for manipulating data.

Before introduce data manipulation functions, let us first load a dataset
from the UCI machine learning repository by using the Python package
ucimlrepo. This package is installed in the conda environment in Section 1.1.
The following piece of code is used to load the auto MPG dataset [211]:

1 from ucimlrepo import fetch_ucirepo

2

3 auto_mpg = fetch_ucirepo(id=9)

4

5 X = auto_mpg.data.features

6 y = auto_mpg.data.targets

7

8 print(type(X))

9 print(X.columns)

10 print(X.iloc [: ,0:4])

11 print(y)

Executing the above block of code loads the auto MPG dataset and gives the
following output:
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Executing the above block of code gives the following output:
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SettingWithCopyWarning was not raised.

3.4 Data manipulation

Pandas provides many functions for manipulating data frames. In this section,
we introduce some commonly used function for manipulating data.

Before introduce data manipulation functions, let us first load a dataset
from the UCI machine learning repository by using the Python package
ucimlrepo. This package is installed in the conda environment in Section 1.1.
The following piece of code is used to load the auto MPG dataset [211]:

1 from ucimlrepo import fetch_ucirepo

2

3 auto_mpg = fetch_ucirepo(id=9)

4

5 X = auto_mpg.data.features

6 y = auto_mpg.data.targets

7

8 print(type(X))

9 print(X.columns)

10 print(X.iloc [: ,0:4])

11 print(y)

Executing the above block of code loads the auto MPG dataset and gives the
following output:
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1 <class 'pandas.core.frame.DataFrame '>
2 Index(['displacement ', 'cylinders ', 'horsepower ', 'weight ',

'acceleration ', 'model_year ', 'origin '], dtype='object
')

3 displacement cylinders horsepower weight

4 0 307.0 8 130.0 3504

5 1 350.0 8 165.0 3693

6 2 318.0 8 150.0 3436

7 3 304.0 8 150.0 3433

8 4 302.0 8 140.0 3449

9 .. ... ... ... ...

10 393 140.0 4 86.0 2790

11 394 97.0 4 52.0 2130

12 395 135.0 4 84.0 2295

13 396 120.0 4 79.0 2625

14 397 119.0 4 82.0 2720

15

16 [398 rows x 4 columns]

17 mpg

18 0 18.0

19 1 15.0

20 2 18.0

21 3 16.0

22 4 17.0

23 .. ...

24 393 27.0

25 394 44.0

26 395 32.0

27 396 28.0

28 397 31.0

29

30 [398 rows x 1 columns]

The auto MPG dataset has seven features and contains 398 records. The
features are saved in the Pandas data frame X and the target is saved in the
Pandas data frame y.

To display some summary statistics of this dataset and check whether it
contains missing values, we can use the following code:

1 print(X.describe ())

2 print(X.isna().sum())

Executing the above code gives the following output:

1 displacement cylinders ... model_year

origin

2 count 398.000000 398.000000 ... 398.000000

398.000000

3 mean 193.425879 5.454774 ... 76.010050

1.572864
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4 std 104.269838 1.701004 ... 3.697627

0.802055

5 min 68.000000 3.000000 ... 70.000000

1.000000

6 25% 104.250000 4.000000 ... 73.000000

1.000000

7 50% 148.500000 4.000000 ... 76.000000

1.000000

8 75% 262.000000 8.000000 ... 79.000000

2.000000

9 max 455.000000 8.000000 ... 82.000000

3.000000

10

11 [8 rows x 7 columns]

12 displacement 0

13 cylinders 0

14 horsepower 6

15 weight 0

16 acceleration 0

17 model_year 0

18 origin 0

19 dtype: int64

From the output, we see that the feature horsepower contains 6 missing
values.

Pandas provides multiple ways to add or delete a column from a data
frame. The following block of code illustrates different ways to add or delete
a column:

1 X1 = X.copy()

2 print(X1.columns)

3 X1["mpg"] = y # add a column at the end

4 print(X1.columns)

5 X1.pop("mpg") # drop a column

6 print(X1.columns)

7 X1.insert(0, "mpg", y) # insert a column before the first

column

8 print(X1.columns)

9 del X1["mpg"] # delete a column

10 print(X1.columns)

In the above code, we make a copy of the data frame before performing various
operations. Executing the above block of code gives the following output:

1 Index(['displacement ', 'cylinders ', 'horsepower ', 'weight ',
'acceleration ',

2 'model_year ', 'origin '],
3 dtype='object ')
4 Index(['displacement ', 'cylinders ', 'horsepower ', 'weight ',
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4 std 104.269838 1.701004 ... 3.697627
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10

11 [8 rows x 7 columns]
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frame. The following block of code illustrates different ways to add or delete
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1 X1 = X.copy()

2 print(X1.columns)
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4 print(X1.columns)

5 X1.pop("mpg") # drop a column

6 print(X1.columns)

7 X1.insert(0, "mpg", y) # insert a column before the first

column

8 print(X1.columns)

9 del X1["mpg"] # delete a column

10 print(X1.columns)

In the above code, we make a copy of the data frame before performing various
operations. Executing the above block of code gives the following output:

1 Index(['displacement ', 'cylinders ', 'horsepower ', 'weight ',
'acceleration ',

2 'model_year ', 'origin '],
3 dtype='object ')
4 Index(['displacement ', 'cylinders ', 'horsepower ', 'weight ',
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'acceleration ',
5 'model_year ', 'origin ', 'mpg'],
6 dtype='object ')
7 Index(['displacement ', 'cylinders ', 'horsepower ', 'weight ',

'acceleration ',
8 'model_year ', 'origin '],
9 dtype='object ')

10 Index(['mpg', 'displacement ', 'cylinders ', 'horsepower ', '
weight ',

11 'acceleration ', 'model_year ', 'origin '],
12 dtype='object ')
13 Index(['displacement ', 'cylinders ', 'horsepower ', 'weight ',

'acceleration ',
14 'model_year ', 'origin '],
15 dtype='object ')

The above output shows that columns changed after adding or deleting a
column.

To create a new column from existing ones, we can use the assign function,
which is illustrated in the following code:

1 X1 = X.assign(displacement2=np.sqrt(X1["displacement"]))

2 print(X1.head())

The assign function always returns a copy of the data. Executing the above
block of code gives the following output:

1 displacement cylinders horsepower ... model_year

origin displacement2

2 0 307.0 8 130.0 ... 70

1 17.521415

3 1 350.0 8 165.0 ... 70

1 18.708287

4 2 318.0 8 150.0 ... 70

1 17.832555

5 3 304.0 8 150.0 ... 70

1 17.435596

6 4 302.0 8 140.0 ... 70

1 17.378147

7

8 [5 rows x 8 columns]

We can also add rows to and drop rows from a data frame. The following
block of code illustrates how to add and drop rows:

1 n, d = X.shape

2 r = pd.DataFrame(np.array([X.iloc[np.random.randint(0, n),

j] for j in range(d)]).reshape ((1,d)), columns=X.

columns)
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3

4 X1 = X._append(r) # add a row

5 X1.loc[len(X1)] = r.values [0] # add a row

6 X1 = pd.concat ([X1, r]) # add a row

7 print(X1.index)

8 X2 = X1.reset_index ()

9 print(X2.index)

10

11 X3 = X2.drop ([398, 399, 400]) # drop rows

12 print(X3.tail())

In the above code, we create a row by selecting randomly values for the
columns. Three different methods are used to add a row to the data frame.
Once rows are added to a data frame, we usually need to reset the index so
that the indices will be unique. Executing the above block of code gives the
following output:

1 Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

2 ...

3 391, 392, 393, 394, 395, 396, 397, 0, 399, 0],

4 dtype='int64 ', length =401)

5 RangeIndex(start=0, stop =401, step =1)

6 index displacement cylinders ... acceleration

model_year origin

7 393 393 140.0 4.0 ... 15.6

82.0 1.0

8 394 394 97.0 4.0 ... 24.6

82.0 2.0

9 395 395 135.0 4.0 ... 11.6

82.0 1.0

10 396 396 120.0 4.0 ... 18.6

82.0 1.0

11 397 397 119.0 4.0 ... 19.4

82.0 1.0

12

13 [5 rows x 8 columns]

The reset index function does not modify the original data. Instead, it re-
turns a copy of the data with the old index as a column.

Real data usually contain missing values. The following block of code shows
how to get the rows with missing values from a data frame:

1 X4 = X[X.isnull ().any(axis =1)]

2 print(X4)
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3
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10
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following output:
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2 ...

3 391, 392, 393, 394, 395, 396, 397, 0, 399, 0],

4 dtype='int64 ', length =401)

5 RangeIndex(start=0, stop =401, step =1)

6 index displacement cylinders ... acceleration

model_year origin

7 393 393 140.0 4.0 ... 15.6

82.0 1.0

8 394 394 97.0 4.0 ... 24.6

82.0 2.0

9 395 395 135.0 4.0 ... 11.6

82.0 1.0

10 396 396 120.0 4.0 ... 18.6

82.0 1.0

11 397 397 119.0 4.0 ... 19.4

82.0 1.0

12

13 [5 rows x 8 columns]

The reset index function does not modify the original data. Instead, it re-
turns a copy of the data with the old index as a column.

Real data usually contain missing values. The following block of code shows
how to get the rows with missing values from a data frame:

1 X4 = X[X.isnull ().any(axis =1)]

2 print(X4)
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The output of executing the above code is

1 displacement cylinders horsepower ... acceleration

model_year origin

2 32 98.0 4 NaN ... 19.0

71 1

3 126 200.0 6 NaN ... 17.0

74 1

4 330 85.0 4 NaN ... 17.3

80 2

5 336 140.0 4 NaN ... 14.3

80 1

6 354 100.0 4 NaN ... 15.8

81 2

7 374 151.0 4 NaN ... 20.5

82 1

8

9 [6 rows x 7 columns]

To fill missing values, we can use the fillna function. For example, we can
use the following code to fill zeros for the missing values:

1 X5 = X.fillna (0)

2 print(X5.isna().sum())

Executing the above code gives the following output:

1 displacement 0

2 cylinders 0

3 horsepower 0

4 weight 0

5 acceleration 0

6 model_year 0

7 origin 0

8 dtype: int64

3.5 File IO

Pandas provides many functions for writing data to and reading data from
various sources such as text files, binary files, and databases. In this section,
we just illustrate how to write data frames to text files and read data from
text files.

Let X and y be the features and the target of the auto MPG dataset frame
from the previous section. To write the features and the target together to a
CSV file, we can proceed as follows:
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1 X["mpg"] = y

2 X.to_csv("autompg.csv")

Executing the above two lines of code will create a CSV file named
autompg.csv in the working directory.

Reading a data frame from a CSV file can be done by using the read csv

function. The following code reads the data from the CSV file created before:

1 dat = pd.read_csv("autompg.csv", index_col =0)

2 print(dat.head())

3 print(dat.tail())

The first column is set to be the row index. The output of executing the above
code is

1 displacement cylinders horsepower ... model_year

origin mpg

2 0 307.0 8 130.0 ... 70

1 18.0

3 1 350.0 8 165.0 ... 70

1 15.0

4 2 318.0 8 150.0 ... 70

1 18.0

5 3 304.0 8 150.0 ... 70

1 16.0

6 4 302.0 8 140.0 ... 70

1 17.0

7

8 [5 rows x 8 columns]

9 displacement cylinders horsepower ... model_year

origin mpg

10 393 140.0 4 86.0 ... 82

1 27.0

11 394 97.0 4 52.0 ... 82

2 44.0

12 395 135.0 4 84.0 ... 82

1 32.0

13 396 120.0 4 79.0 ... 82

1 28.0

14 397 119.0 4 82.0 ... 82

1 31.0

15

16 [5 rows x 8 columns]
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9 displacement cylinders horsepower ... model_year

origin mpg

10 393 140.0 4 86.0 ... 82

1 27.0

11 394 97.0 4 52.0 ... 82

2 44.0

12 395 135.0 4 84.0 ... 82
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16 [5 rows x 8 columns]
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3.6 Summary

Pandas is an important Python packages for working with tabular data. In
this chapter, we gave a brief introduction to the Pandas package. In particu-
lar, we introduced Pandas data structures and how to manipulate these data
structures. For a complete reference of functions provided by Pandas, readers
are referred to the website of the package at https://pandas.pydata.org.

https://pandas.pydata.org
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The Matplotlib Library

The Matplotlib library is a comprehensive Python library that is used to
create visualizations. It is built on NumPy and can be used to create static,
animated, and interactive visualizations. In this chapter, we shall give a brief
introduction to the Matplotlib library.

4.1 Overview

In Matplotlib, creating a figure involves manipulating the following objects: a
Figure object, Axes objects, Axis objects, and Artist objects. Figure 4.1
shows a hierarchical diagram of a few selected classes of Matplotlib. The
Figure object is the top container of other objects. However, the Figure

object is also an Artist object. In fact, almost all objects in Matplotlib are
Artist objects.

Figure

FigureBase SubFigure

Artist AxesBase Axes PolarAxes

Axis XAxis GeoAxes

YAxis

FIGURE 4.1: A hierarchical diagram of selected classes of Matplotlib.

An Axes object is used to configure a plotting area and includes two or
three Axis objects. An Axis object is used to specify ticks, tick labels, and
scales for the data in the Axes object. Most parts of a figure are configured
by using methods from the Axes class.

The inputs to Matplotlib plotting functions are NumPy arrays or objects
that can be converted to NumPy arrays by the NumPy function asarray.

DOI: 10.1201/9781003592648-4 66
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Pandas data objects and NumPy matrices may not work for Matplotlib. These
data objects need to be converted to NumPy arrays before being plotted.

Matplotlib supports the following two major coding styles:

Object-oriented style This coding style explicitly creates Figure objects
and Axes objects, and controls them by using methods defined on them.

Matlab style This coding style resembles plotting figures in Matlab, which
is a proprietary software for scientific computing. This style relies on
functions in the pyplot module to automatically create and manage
figures.

The following block of code illustrates the two coding style:

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 t = np.arange(1, 101)

5 y = np.cumsum(np.random.standard_normal (100))

6

7 # OO style

8 fig , ax = plt.subplots(figsize =(5, 3))

9 ax.plot(t, y, color="black")

10 ax.set_xlabel('t')
11 ax.set_ylabel('y')
12 ax.set_title("Random walk")

13

14 # Matlab style

15 plt.figure(figsize =(5, 3))

16 plt.plot(t, y, color="black")

17 plt.xlabel('t')
18 plt.ylabel('y')
19 plt.title("Random walk")

In the above code, we first import the NumPy package and the Matplotlib
package. Then we use NumPy functions to generate a sequence of time steps
and a random walk. In the object-oriented style, the subplots function is
used to create a Figure object and an Axes object. Then the Axes object
is manipulated to display the data. In the Matlab style, functions from the
pyplot module are used to create the plot. The two styles will create exactly
the same figure, which is shown in Figure 4.2.

The differences of the two coding styles have been documented in Mat-
plotlib’s documentation, which is available at https://matplotlib.org/. For
creating simple plots, both coding styles can be used. For creating complex
plots that involves many objects, the object-oriented style is better than the
Matlab style as the former allows easy references to the plotting objects. In
this book, we will use the object-oriented style to plot figures.

https://matplotlib.org
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FIGURE 4.2: A simple random walk created by Matplotlib.

4.2 Basic plotting

In this section, we illustrate how to use Matplotlib to create basic plots such
as scatter plots, box plots, and histograms.

A scatter plot is used to plot a pair of two variables. It is used to examine
the relationship between two variables. In Matplotlib, we can use the scatter
function to create scatter plots. The following block of code illustrates how to
create scatter plots in Matplotlib:

1 from ucimlrepo import fetch_ucirepo

2

3 auto_mpg = fetch_ucirepo(id=9)

4

5 X = auto_mpg.data.features

6 y = auto_mpg.data.targets

7

8 fig1 , ax1 = plt.subplots(figsize =(4, 3))

9 ax1.scatter(X["cylinders"], y, color="black", s=8)

10 ax1.set_xlabel('Cylinders ')
11 ax1.set_ylabel('mpg')
12

13 fig2 , ax2 = plt.subplots(figsize =(4, 3))

14 ax2.scatter(X["horsepower"], y, color="black", s=8)

15 ax2.set_xlabel('Horse power ')
16 ax2.set_ylabel('mpg')
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In the above code, we first get the auto MPG dataset from the UCI ma-
chine learning repository. Then we create a scatter plot between the variables
cylinders and mpg. Afterwards, we create a scatter plot between the variables
horsepower and mpg. The argument s=8 used in the scatter function spec-
ifies the size of the points. The results scatter plots are shown in Figure 4.3.
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FIGURE 4.3: Two scatter plots.

A histogram is used to display the distribution of a numerical variable. It
is created by dividing the data into a specified number of bins and displaying
the frequencies (in count or in percentage) of the data falling in the bins. The
following block of code illustrates how to create histograms in Matplotlib:

1 from matplotlib.ticker import PercentFormatter

2

3 fig3 , ax3 = plt.subplots(figsize =(4, 3))

4 ax3.hist(X["displacement"], bins=50, color="black")

5

6 fig4 , ax4 = plt.subplots(figsize =(4, 3))

7 ax4.hist(y, bins=50, color="black", density=True)

8 ax4.yaxis.set_major_formatter(PercentFormatter(xmax =1))

The above code creates two histograms. In the first histogram, the counts are
displayed in the vertical axis. In the second histogram, the percentages are
displayed in the vertical axis. The tick labels of the vertical axis of the second
histogram are formatted by the function PercentFormatter from the ticker
module. The resulting histograms are shown in Figure 4.4.

Like a histogram, a box plot is also used to display the distribution of
a quantitative variable. A box plot displays the interquantile range of the
data and shows the least and greatest values. In Matplotlib, the boxplot

function is used to create box plots. The following block of code creates two
box plots:



70 The Matplotlib Library

100 200 300 400

0

10

20

30

40

Displacement

(a)

10 20 30 40

0.0%

2.0%

4.0%

6.0%

8.0%

mpg

(b)

FIGURE 4.4: Two histograms.

1 fig5 , ax5 = plt.subplots(figsize =(4, 3))

2 ax5.boxplot(X["displacement"], patch_artist=True ,

3 boxprops=dict(color='black ', facecolor='
white '),

4 whiskerprops=dict(color='black '),
5 capprops=dict(color='black '),
6 medianprops=dict(color='black '),
7 flierprops=dict(marker='o', color='black ',

markersize =5))

8 ax5.set_title("Displacement")

9

10 fig6 , ax6 = plt.subplots(figsize =(4, 3))

11 ax6.boxplot(y, patch_artist=True ,

12 boxprops=dict(color='black ', facecolor='
white '),

13 whiskerprops=dict(color='black '),
14 capprops=dict(color='black '),
15 medianprops=dict(color='black '),
16 flierprops=dict(marker='o', color='black ',

markersize =5))

17 ax6.set_title("mpg")

In the above code, we create box plots for two variables of the auto MPG
dataset. All components of a box plot can be customized. The resulting box
plots are shown in Figure 4.5.
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FIGURE 4.5: Two histograms.

4.3 Subplots

Subplots are plots that appear in a figure together. Producing subplots in
Matplotlib is straightforward. The following block of code illustrates how to
create subplots in Matplotlib:

1 iris = fetch_ucirepo(id=53)

2

3 X = iris.data.features

4 y = iris.data.targets

5

6 varnames = list(X.columns)

7 fig7 , ax7 = plt.subplots (3,2, figsize =(6 ,9))

8 fig7.tight_layout ()

9 nCount = 0;

10 for i in range (3):

11 for j in range(i+1, 4):

12 rowInd = nCount // 2

13 colInd = nCount - 2* rowInd

14 nCount += 1

15 ax7[rowInd ][ colInd ]. scatter(X[varnames[i]], X[

varnames[j]], color='black ', s=5)

16 ax7[rowInd ][ colInd ]. set_xlabel(varnames[i])

17 ax7[rowInd ][ colInd ]. set_ylabel(varnames[j])

In the above code, we first load the Iris dataset, which has an id of 53 in the
UCI machine learning repository. Then we create a figure with 3 subplots.
Then we use nested for loops to add scatter plots to these subplots. The
tight layout function is used to automatically adjust the spacing between
subplots to prevent overlap. The resulting figure is shown in Figure 4.6.
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FIGURE 4.6: Scatter plots of the Iris dataset.
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FIGURE 4.6: Scatter plots of the Iris dataset.
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4.4 File IO

Matplotlib provides functions to save plots to files. This feature is extremely
useful when executing Python code in servers. The following code illustrates
how to save a figure to a PDF file:

1 fig7.savefig("iris.pdf", bbox_inches='tight ')

In the above code, the object fig7 is the figure object created in the previous
section. Executing the above line of code will produce a PDF file in the working
directory. In addition to PDF files, Matplotlib can also save figures to other
file formats.

4.5 Summary

In this chapter, we gave a brief introduction to the Matplotlib package, which
is an important Python package for visualizing data. We introduced some
functions for creating basic plots and subplots. Matplotlib supports many
other types of plots. For a complete guide, readers are referred to the package’s
documentation at https://matplotlib.org/.

https://matplotlib.org
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Data Clustering in Python



http://taylorandfrancis.com


5

Introduction to Data
Clustering

Data clustering is a fundamental data mining technique that groups simi-
lar data points together, enabling the discovery of patterns, identification of
trends, and facilitation of data-driven decision-making. In this chapter, we
provide a concise introduction to the key concepts and methods of data clus-
tering.

5.1 History of Clustering

Data clustering, or cluster analysis, refers to a process of dividing a set of
objects into clusters, which are homogeneous groups that are externally iso-
lated and internally cohesive. Data clustering emerged as a major research
topic in the 1960s and the sum-of-squares criterion was used to develop clus-
tering algorithms. The k-means algorithm is a clustering algorithm based on
the sum-of-squares criterion and has been proposed by several researchers in
different forms and under different assumptions.

The sum-of-squares criterion comes in two versions [28, 29]: the discrete
version and the continuous version. Let X = {x1, x2, . . ., xn} denote a set of
n data points in a d-dimensional space. Let k denote the desired number of
clusters. The discrete version of the sum-of-squares criterion is formulated as
follows:

L(Z) =
k∑

l=1

∑
x∈Cl

∥x− zl∥2, (5.1)

where C = {C1, C2, . . . , Ck} is the set of clusters, Z = {z1, z2, . . . , zk} is the
set of cluster centers, and zl is the center (also called the centroid or the
prototype) of the lth cluster. Here ∥ · ∥ denotes the L2 norm or Euclidean
distance, which is defined as:

∥x− y∥ =

√√√√
d∑

j=1

(xj − yj)2, (5.2)
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where x and y represent two data points.
The continuous version of the sum-of-squares criterion is formulated as

follows [29]:

L(C) =
k∑

l=1

∫

Cl

∥x− E[X|X ∈ Cl]∥2 dP (x), (5.3)

where X a random vector with a distribution P in Rd and C = {C1, C2, . . .,
Ck} is a partition of Rd. However, it might be computationally challenging to
calculate the cluster centers under the continuous sum-of-squares criterion.

Many methods have been proposed to minimize the discrete criterion.
These methods can be classified into two types: exact minimization and
approximate minimization. Methods for exact minimization include integer
programming [212, 245], dynamic programming [19, 150], branch-and-bound
methods [188], and cutting plane methods [114]. Exact minimization meth-
ods are impractical for large clustering problems. Approximate minimization
methods have been developed to handle large clustering problems. Approxi-
mate methods include traditional heuristics (e.g., k-means) and metaheuristics
(e.g., simulated annealing, Tabu search, genetic algorithm).

In the 1950s, several researchers studied the use of the sum-of-squares
criteria for clustering [47, 50, 51, 80, 236]. Dalenius and Gurney [51, 50] were
among the first to formulate the clustering problem under the continuous sum-
of-squares criterion, although they did not use a k-means algorithm to do the
minimization. Cox [47] defined the average loss from grouping as follows:

L =
E
[
(Y − E[Y ])2

]
σ2

=
1

σ2

k∑
l=1

plE
[
(Y − ξl)

2|Y ∈ Cl

]

= 1− 1

σ2

k∑
l=1

pl (ξl − E[Y ])
2
, (5.4)

where Y is a random variable with standard deviation σ, k denotes the number
of groups, Cl is the lth group, ξl is the mean of all observations in Cl, and pl
is the probability of an observation falling in Cl. Cox [47] also considered a
special case when X follows a normal distribution. For k = 3, the three groups
are (−∞,−y), (−y, y), and (y,∞), where y is chosen such that the average
loss is minimized. In this case, the average loss is

L = 1− 2φ(y)2

Φ(−y)
,

where φ(·) and Φ(·) are the probability density function and the cumulative
distribution function of the standard normal distribution, respectively. The
average loss reaches the minimum when y = 0.612.

Fisher [80] investigated the clustering problem under the discrete sum-
of-squares criterion. In particular, Fisher [80] proposed a practical procedure
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of-squares criterion. In particular, Fisher [80] proposed a practical procedure
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to group a set of arbitrary numbers so that the variance within groups is
minimized. Given n numbers x1, x2, . . ., xn. For i = 1, 2, . . . , n, the ith number
is associated with a weight wi. The variance within groups of dividing these
n numbers into k groups is defined as

D =

n∑
i=1

wi(xi − zγ(i))
2, (5.5)

where zl denotes the weighted arithmetic mean of numbers in the lth group
and γ(i) denotes the index of the group to which xi is assigned. Fisher [80]
showed that among all possible partitions, only contiguous partitions need to
be considered. A contiguous partition is one in which, for any numbers xi, xj ,
and xs satisfying xi < xj < xs, if xi and xs belong to the same group, then
xj must also belong to that group.

Regarding the origins of the k-means algorithm, Steinley [237] noted that
Sebestyen [228] and MacQueen [174] independently developed it as a strat-
egy for minimizing the sum-of-squares criterion. Bock [29] pointed out that
Steinhaus [236] first proposed explicitly the continuous k-means algorithm in
the multidimensional case, Forgy [83] first proposed the discrete k-means al-
gorithm, and MacQueen [174] first used the name “k-means algorithm.” In
addition to propose the continuous version of the k-means algorithm, Stein-
haus [236] discussed the existence and uniqueness of a solution. Forgy [83]
published an abstract of his presentation at the Spring meeting of ENAR
(Eastern North American Region) held at the Florida State University at Tal-
lahassee on April 29 to May 1, 1965. The k-means algorithm was not included
in the abstract. However, Anderberg [10, p161] and MacQueen [174, p294]
described the details of Forgy’s presentation. In addition, Lloyd studied the
continuous sum-of-squares criterion in R1 and proposed an one-dimensional
version of the k-means algorithm in 1957. The algorithm was not published
in a journal until 1982 (see [170]).

Since the k-means algorithm was proposed in the 1960s, data clustering has
become an increasingly popular research topic. Figure 5.1 shows the number
of publications related to data clustering from 1976 to 2024. The titles or
the abstracts of these publications contain the keyword “data clustering.” In
reality, the number of publications should be much more than shown in the
figure because only digitized publications are counted. From the figure, we see
that publications related to data clustering show an exponentially increase
trend over the past 50 years.

5.2 Data Clustering Process

A typical clustering process involves the following five steps [144]:

(a) pattern representation;

(b) dissimilarity measure definition;
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FIGURE 5.1: Publications related to data clustering from 1976 to 2024. Data
source: app.dimensions.ai.

(c) clustering;

(d) data abstraction;

(e) assessment of output.

In the pattern representation step, the number and type of the attributes are
determined. Feature selection, the process of identifying the most effective
subset of the original attributes to use in clustering, and feature extraction,
the process of transforming the original attributes to new attributes, are also
done in this step if needed.

In the dissimilarity measure definition step, a distance measure appropriate
to the data domain is defined. Various distance measures have been developed
and used in data clustering [90]. The most common one among them, for
example, is the Euclidean distance.

In the clustering step, a clustering algorithm is used to group a set of
records into a number of meaningful clusters. The clustering can be hard
clustering, where each record belongs to one and only one cluster, or fuzzy
clustering, where a record can belong to two or more clusters with prob-
abilities. The clustering algorithm can be hierarchical, where a nested se-
ries of partitions is produced, or partitional, where a single partition is
identified.
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In the clustering step, a clustering algorithm is used to group a set of
records into a number of meaningful clusters. The clustering can be hard
clustering, where each record belongs to one and only one cluster, or fuzzy
clustering, where a record can belong to two or more clusters with prob-
abilities. The clustering algorithm can be hierarchical, where a nested se-
ries of partitions is produced, or partitional, where a single partition is
identified.
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In the data abstraction step, one or more prototypes (i.e., representative
records) of a cluster is extracted so that the clustering results are easy to
comprehend. For example, a cluster can be represented by a centroid.

In the final step, the output of a clustering algorithm is assessed. There
are three types of assessments: external, internal, and relative [146]. In an
external assessment, the recovered structure of the data is compared to the a
priori structure. In an internal assessment, one tries to determine whether the
structure is intrinsically appropriate to the data. In a relative assessment, a
test is performed to compare two structures and measure their relative merits.

5.3 Clusters

Over the last 50 years, thousands of clustering algorithms have been developed
[145]. However, there is still no formal uniform definition of the term cluster.
In fact, formally defining cluster is difficult and may be misplaced [72].

Although no formal definition of cluster exists, there are several operational
definitions of cluster. For example, Bock [26] suggested that a cluster is a group
of data points satisfying various plausible criteria such as:

(a) Share the same or closely related properties;

(b) Show small mutual distances;

(c) Have “contacts” or “relations” with at least one other data point in the
group;

(d) Can be clearly distinguishable from the rest of the data points in the
dataset.

Carmichael [37] suggested that a set of data points forms a cluster if the
distribution of the set of data points satisfies the following conditions:

(a) Continuous and relatively dense regions exist in the data space; and

(b) Continuous and relatively empty regions exist in the data space.

Lorr [171] suggested that there are two kinds of clusters for numerical
data: compact clusters and chained clusters. A compact cluster is formed by a
group of data points that have high mutual similarity. For example, Figure 5.2
shows a two-dimensional dataset with three compact clusters. Usually, such a
compact cluster has a center [181].

A chained cluster is formed by a group of data points in which any two data
points in the cluster are reachable through a path. For example, Figures 5.3
shows a dataset with three chained clusters. Unlike a compact cluster, which
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FIGURE 5.2: A dataset with three compact clusters.

can be represented by a single center, a chained cluster is usually represented
by multiple centers.

Everitt [73] also summarized several operational definitions of cluster. For
example, one definition of cluster is that a cluster is a set of data points
which are alike and data points from different clusters are not alike. Another
definition of cluster is that a cluster is a set of data points such that the
distance between any two points in the cluster is less than the distance between
any point in the cluster and any point not in it.

5.4 Data Types

Most clustering algorithms are associated with data types. It is important to
understand different types of data in order to perform cluster analysis. By
data type we mean hereby the type of a single attribute.

In terms of how the values are obtained, an attribute can be typed as
discrete and continuous. The values of a discrete attribute are usually ob-
tained by some sort of counting; while the values of a continuous attribute are
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FIGURE 5.3: A dataset with three chained clusters.

obtained by some sort of measuring. For example, the number of cars is dis-
crete and the weight of a person is continuous. There is a gap between two
different discrete values and there is always a value between two different
continuous values.

In terms of measurement scales, an attribute can be typed as ratio, interval,
ordinal, or nominal. Nominal data is discrete data without a natural ordering.
For example, name of a person is nominal. Ordinal data is discrete data that
have a natural ordering. For example, the order of persons in a line is ordinal.
Interval data is continuous data that have a specific order and equal intervals.
For example, temperature is interval data. Ratio data is continuous data that
is interval data and has a natural zero. For example, the annual salary of a
person is ratio data. The ratio and interval types are continuous types; while
the ordinal and nominal types are discrete types (see Table 5.1).

TABLE 5.1: Attribute types.

Continuous Discrete

Ratio Ordinal
Interval Nominal
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5.5 Dissimilarity and Similarity Measures

Dissimilarity or distance is an important part of clustering as almost all clus-
tering algorithms rely on some distance measure to define the clustering cri-
teria. Since records might have different types of attributes, the appropriate
distance measures are also different. For example, the most popular Euclidean
distance is used to measure dissimilarities between continuous records, i.e.,
records consist of continuous attributes.

A distance function D on a dataset X is a binary function that satisfies
the following conditions [10, 260]:

(a) D(x,y) ≥ 0 (Nonnegativity);

(b) D(x,y) = D(y,x) (Symmetry or Commutativity);

(c) D(x,y) = 0 if and only if x = y (Reflexivity);

(d) D(x,y) ≤ D(x, z) +D(z+ y) (Triangle inequality),

where x, y, and z are arbitrary data points in X. A distance function is also
called a metric, which satisfies the above four conditions.

If a function satisfies the first three conditions and does not satisfy the
triangle inequality, then the function is called a semimetric. In addition, if a
metric D satisfies the following condition

D(x,y) ≤ max{D(x, z), D(z+ y)},

then the metric is called an ultrametric [153].
Unlike distance measures, similarity measures are defined in the opposite

way. The more the two data points similar to each other, the larger the simi-
larity is and the smaller the distance is.

5.5.1 Measures for Continuous Data

The most common distance measure for continuous data is the Euclidean dis-
tance. Given two data points x and y in a d-dimensional space, the Euclidean
distance between the two data points is defined as

Deuc(x,y) =

√√√√
d∑

j=1

(xj − yj)2, (5.6)

where xj and yj are the jth components of x and y, respectively.
The Euclidean distance measure is a metric [260]. Clustering algorithms

that use the Euclidean distance tend to produce hyperspherical clusters. Clus-
ters produced by clustering algorithms that use the Euclidean distance are
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invariant to translations and rotations in the data space [65]. One disadvan-
tage of the Euclidean distance is that attributes with large values and vari-
ances dominate other attributes with small values and variances. However,
this problem can be alleviated by normalizing the data so that each attribute
contributes equally to the distance.

The squared Euclidean distance between two data points is defined as

Dsqu(x,y) =

d
j=1

(xj − yj)
2. (5.7)

The Manhattan distance or city block distance between two data points is
defined as

Dman(x,y) =

d
j=1

|xj − yj |. (5.8)

The maximum distance between two data points is defined as

Dmax(x,y) = max
1≤j≤d

|xj − yj |. (5.9)

The Euclidean distance and the Manhattan distance are special cases of
the Minkowski distance, which is defined as

Dmin(x,y) =




d
j=1

|xj − yj |p



1
p

, (5.10)

where p ≥ 1. In fact, the maximum distance is also a special case of the
Minkowski distance when we let p → ∞.

The Mahalanobis distance is defined as

Dmah(x,y) =


(x− y)TΣ−1(x− y), (5.11)

where Σ−1 is the inverse of a covariance matrix Σ, x and y are column vectors,
(x − y)T denotes the transpose of (x − y). The Mahalanobis distance can
be used to alleviate the distance distortion caused by linear combinations of
attributes [146, 176].

Some other distance measures for continuous data have also been proposed.
For example, the average distance [163], the generalized Mahalanobis distance
[186], the weighted Manhattan distance [255], the chord distance [200], and
the Pearson correlation [69], to name just a few. Many other distance measures
for numeric data can be found in [90].

5.5.2 Measures for Discrete Data

The most common distance measure for discrete data is the simple matching
distance. The simple matching distance between two categorical data points
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x and y is defined as [134, 135, 136, 156]:

Dsim(x,y) =

d∑
j=1

δ(xj , yj), (5.12)

where d is the dimension of the data points and δ(·, ·) is defined as

δ(xj , yj) =

{
0 if xj = yj ,
1 if xj ̸= yj .

Some other matching coefficients for categorical data have also been pro-
posed. For a comprehensive list of matching coefficients, readers are referred
to [90, Chapter 6]. A comprehensive list of similarity measures for binary data,
which is a special case of categorical data, can also be found in [90].

5.5.3 Measures for Mixed-type Data

A dataset might contain both continuous and discrete data. In this case, we
need to use measure for mixed-type data. Gower [109] proposed a general
similarity coefficient for mixed-type data, which is defined as

Sgow(x,y) =
1

d∑
j=1

w(xj , yj)

d∑
j=1

w(xj , yj)s(xj , yj), (5.13)

where s(xj , yj) is a similarity component for the jth components of x and y,
and w(xj , yj) is either one or zero depending on whether a comparison for the
jth component of the two data points is valid or not.

For different types of attributes, s(xj , yj) and w(xj , yj) are defined differ-
ently. If the jth attribute is continuous, then

s(xj , yj) = 1− |xj − yj |
Rj

,

w(xj , yj) =

{
0 if xj or yj is missing,
1 otherwise,

where Rj is the range of the jth attribute.
If the jth attribute is binary, then

s(xj , yj) =

{
1 if both xj and yj are “present”,
0 otherwise,

w(xj , yj) =

{
0 if both xj and yj are “absent”,
1 otherwise.
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If the jth attribute is nominal or categorical, then

s(xj , yj) =

{
1 if xj = yj ,
0 otherwise,

w(xj , yj) =

{
0 if xj or yj is missing,
1 otherwise.

A general distance measure was defined similarly in [109]. Ichino and
Yaguchi [138, 139] proposed a generalized Minkowski distance, which was also
presented in [90].

5.6 Hierarchical Clustering Algorithms

A hierarchical clustering algorithm is a clustering algorithm that divides a
dataset into a sequence of nested partitions. Hierarchical clustering algorithms
can be further classified into two categories: agglomerative hierarchical clus-
tering algorithms and divisive hierarchical clustering algorithms.

An agglomerative hierarchical algorithm starts with every single record as
a cluster and then repeats merging the closest pair of clusters according to
some similarity criteria until only one cluster is left. For example, Figure 5.4
shows an agglomerative clustering of a dataset with 5 records.

In contrast to agglomerative clustering algorithms, a divisive clustering
algorithm starts with all records in a single cluster and then repeats splitting
large clusters into smaller ones until every cluster contains only a single record.
Figure 5.5 shows an example of divisive clustering of a dataset with 5 records.

5.6.1 Agglomerative Hierarchical Algorithms

Based on different ways to calculate the distance between two clusters, agglom-
erative hierarchical clustering algorithms can be classified into the following
several categories [189]:

(a) Single linkage algorithms;

(b) Complete linkage algorithms;

(c) Group average algorithms;

(d) Weighted group average algorithms;

(e) Ward’s algorithms;

(f) Centroid algorithms;

(g) Median algorithms;
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FIGURE 5.4: Agglomerative clustering.

(h) Other agglomerative algorithms that do not fit into the above cate-
gories.

For algorithms in the first seven categories, we can use the Lance-Williams
recurrence formula [161, 162] to calculate the distance between an existing
cluster and a cluster formed by merging two existing clusters. The Lance-
Williams formula is defined as

D(Ck, Ci ∪ Cj)

= αiD(Ck, Ci) + αjD(Ck, Cj)

+βD(Ci, Cj) + γ|D(Ck, Ci)−D(Ck, Cj)|,

where Ck, Ci, and Cj are three clusters, Ci ∪ Cj denotes the cluster formed
by merging clusters Ci and Cj , D(·, ·) is a distance between clusters, and αi,
αj , β, and γ are adjustable parameters. Section 6.1 presents various values of
these parameters.

When the Lance-Williams formula is used to calculate distances, the single
linkage and the complete linkage algorithms induce a metric on the dataset
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FIGURE 5.5: Divisive clustering.

known as the ultrametric [153]. However, other agglomerative algorithms that
use the Lance-Williams formula might not produce a ultrametric [182].

A more general recurrence formula has been proposed in [148] and dis-
cussed in [107] and [90]. The general recurrence formula is defined as

D(Ck, Ci ∪ Cj)

= αiD(Ck, Ci) + αjD(Ck, Cj)

+βD(Ci, Cj) + γ|D(Ck, Ci)−D(Ck, Cj)|
+δih(Ci) + δjh(Cj) + ϵh(Ck),

where h(C) denotes the height of cluster C in the dendrogram, and δi, δj ,
and ϵ are adjustable parameters. Other symbols are the same as in the Lance-
Williams formula. If we let the three parameters δi, δj , and ϵ be zeros, then
the general formula becomes the Lance-Williams formula.

Some other agglomerative hierarchical clustering algorithms are based on
the general recurrence formula. For example, the flexible algorithms [161],
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the sum of squares algorithms [148], and the mean dissimilarity algorithms
[107, 129] are such agglomerative hierarchical clustering algorithms.

5.6.2 Divisive Hierarchical Algorithms

Divisive hierarchical algorithms can be classified into two categories: mono-
thetic and polythetic [73, 254]. A monothetic algorithm divides a dataset based
on a single specified attribute. A polythetic algorithm divides a dataset based
on the values of all attributes.

Given a dataset containing n records, there are 2n − 1 nontrivial different
ways to split the dataset into two pieces [68]. As a result, it is not feasible to
enumerate all possible ways of dividing a large dataset. Another difficulty of
divisive hierarchical clustering is to choose which cluster to split in order to
ensure monotonicity.

Divisive hierarchical algorithms that do not consider all possible divisions
and that are monotonic do exist. For example, the algorithm DIANA (DIvisive
ANAlysis) is such a divisive hierarchical clustering algorithm [156].

5.6.3 Other Hierarchical Algorithms

In the previous two subsections, we presented several classic hierarchical clus-
tering algorithms. These classic hierarchical clustering algorithms have draw-
backs. One drawback of these algorithms is that they are sensitive to noise and
outliers. Another drawback of these algorithms is that they can not handle
large datasets since their computational complexity is at least O(n2) [260],
where n is the size of the dataset. Several hierarchical clustering algorithms
have been developed in an attempt to improve these drawbacks. For exam-
ple, BIRCH [273], CURE [117], ROCK [115], and Chameleon [155] are such
hierarchical clustering algorithms.

Other hierarchical clustering algorithms have also been developed. For
example, [164] proposed an agglomerative hierarchical clustering algorithm
based on the scale-space theory in human visual system research. [166] pro-
posed a similarity-based agglomerative clustering (SBAC) to cluster mixed-
type data. [17] proposed a divisive hierarchical clustering algorithm based on
unsupervised decision trees.

5.6.4 Dendrograms

Results of a hierarchical clustering algorithm are usually visualized by den-
drograms. A dendrogram is a tree in which each internal node is associated
with a height. The heights in a dendrogram satisfy the following ultrametric
conditions [153]:

hij ≤ max{hik, hjk} ∀i, j, k ∈ {1, 2, · · · , n},
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where n is the number of records in a dataset and hij is the height of the
internal node corresponding to the smallest cluster to which both record i
and record j belong.

Figure 5.6 shows a dendrogram of the famous Iris dataset [79]. This dendro-
gram was created by the single linkage algorithm with the Euclidean distance.
From the dendrogram we see that the single linkage algorithm produces two
natural clusters for the Iris dataset.

More information about dendrograms can be found in [107], [106], [231],
[149], [13], [244], [216], and [110]. Gordon [106] discussed the ultrametric con-
ditions for dendrograms. Sibson [231] presented a mathematical representation
of a dendrogram. Algorithms for plotting dendrograms are discussed in [216]
and [110].

5.7 Partitional Clustering Algorithms

A partitional clustering algorithm is a clustering algorithm that divides a
dataset into a single partition. Partitional clustering algorithms can be fur-
ther classified into two categories: hard clustering algorithms and fuzzy clus-
tering algorithms. In hard clustering, each record belongs to one and only one
cluster. In fuzzy clustering, a record can belong to two or more clusters with
probabilities.

Suppose a dataset with n records is clustered into k clusters by a parti-
tional clustering algorithm. The clustering result of the partitional clustering
algorithm can be represented by a k × n matrix U defined as

U =




u11 u12 · · · u1n

u21 u22 · · · u2n

...
...

. . .
...

uk1 uk2 · · · ukn


 . (5.14)

The matrix U produced by a hard clustering algorithm has the following
properties:

uji = 0 or 1, 1 ≤ j ≤ k, 1 ≤ i ≤ n, (5.15a)

k
j=1

uji = 1, 1 ≤ i ≤ n, (5.15b)

n
i=1

uji > 0, 1 ≤ j ≤ k. (5.15c)

The matrix U produced by a fuzzy clustering algorithm has the following
properties:

0 ≤ uji ≤ 1, 1 ≤ j ≤ k, 1 ≤ i ≤ n, (5.16a)
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FIGURE 5.6: The dendrogram of the Iris dataset.
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FIGURE 5.6: The dendrogram of the Iris dataset.
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k∑
j=1

uji = 1, 1 ≤ i ≤ n, (5.16b)

n∑
i=1

uji > 0, 1 ≤ j ≤ k. (5.16c)

In this section, we present a survey of several partitional clustering al-
gorithms. For a more comprehensive list of partitional clustering algorithms,
readers are referred to [90] and [260].

5.7.1 Center-Based Clustering Algorithms

Center-based clustering algorithms [240, 272] are clustering algorithms that
use a center to represent a cluster. Center-based clustering algorithms have
two important properties [272]:

(a) They have a clearly defined objective function;

(b) They have a low runtime cost.

The standard k-means algorithm is a center-based clustering algorithm and
is also one of the most popular and simple clustering algorithms. Although
the k-means algorithm was first published in 1955 [145], about 50 years ago,
it is still widely used today.

Given a dataset X = {x1,x2, · · · ,xn} with n records. The k-means al-
gorithm tries to divide the dataset into k disjoint clusters C1, C2, · · · , Ck by
minimizing the following objective function

E =
k∑

i=1

∑
x∈Ci

D(x, µ(Ci)),

where D(·, ·) is a distance function and µ(Ci) is the center of the cluster Ci

and is usually defined as

µ(Ci) =
1

|Ci|
∑
x∈Ci

x.

The standard k-means algorithm minimizes the objective function using an
iterative process [25, 207, 229].

The standard k-means algorithm has several variations [90]. For example,
the continuous k-means algorithm [76], the compare-means algorithm [207],
the sort-means algorithm [207], the k-means algorithm based on kd-tree [206],
and the trimmed k-means algorithm [48] are variations of the standard k-
means algorithm.

Other center-based clustering algorithms include the k-modes algorithm
[135, 41], the k-probabilities algorithm [255], the k-prototypes algorithm [136],
the x-means algorithm [206], the k-harmonic means algorithm [271], the mean-
shift algorithm [43, 44, 45, 85], and the maximum-entropy clustering (MEC)
algorithm [218].
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5.7.2 Search-based Clustering Algorithms

Many data clustering algorithms are formulated as some optimization prob-
lems [66, 197], which are complicate and have many local optimal solutions.
Most of the clustering algorithms will stop when they find a locally optimal
partition of the dataset. That is, most of the clustering algorithms may not
be able to find the globally optimal partition of the dataset. For example, the
fuzzy k-means algorithm [229] is convergent but may stop at a local minimum
of the optimization problem.

Search-based clustering algorithms are developed to deal with the prob-
lem mentioned above. A search-based clustering algorithm aims at finding a
globally optimal partition of a dataset by exploring the solution space of the
underlying optimization problem. For example, clustering algorithms based
on genetic algorithms [128] and tabu search [103] are search-based clustering
algorithms.

Al-Sultan and Fedjki[9] proposed a clustering algorithm based on a tabu
search technique. Ng and Wong [197] improved the fuzzy k-means algorithm
using a tabu search algorithm. Other search-based clustering algorithms in-
clude the J-means algorithm [185], the genetic k-means algorithm [159], the
global k-means algorithm [167], the genetic k-modes algorithm [93], and the
SARS algorithm [132].

5.7.3 Graph-Based Clustering Algorithms

Clustering algorithms based on graph have also been proposed. A graph is a
collection of vertices and edges. In graph-based clustering, a vertex represents
a data point or record and a edge between a pair of vertices represents the
similarity between the two records represented by the pair of vertices [260]. A
cluster usually corresponds to a highly connected subgraph [123].

Several graph-based clustering algorithms have been proposed and devel-
oped. The chameleon [155] algorithm is a graph-based clustering algorithm
that uses a sparse graph to represent a dataset. The CACTUS algorithm [99]
is another graph-based clustering algorithm that uses a graph, called the sim-
ilarity graph, to represent the inter-attribute and intra-attribute summaries.
The ROCK algorithm [116] is an agglomerative hierarchical clustering algo-
rithm that uses a graph connectivity to calculate the similarities between data
points.

Gibson and coauthors [102] proposed a clustering algorithm based on
hypergraphs and dynamical systems. Foggia and coauthors [81] proposed a
graph-based clustering algorithm that is able to find clusters of any size and
shape and does not require specifying the number of clusters. Foggia and
coauthors [82] also compared the performance of several graph-based cluster-
ing algorithms.

Most of the graph-based clustering algorithms mentioned above use
graphs as data structures and do not use graph analysis. Spectral clustering
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algorithms, which are also graph-based clustering algorithms, first construct
a similarity graph and then use graph Laplacian matrices and standard linear
algebra methods to divide a dataset into a number of clusters. von Luxburg
[246] presented a tutorial on spectral clustering. Filippone and coauthors [78]
also presented a survey of spectral clustering. Interested readers are referred
to these two papers and the book by Ding and Zha [61].

5.7.4 Grid-Based Clustering Algorithms

Grid-based clustering algorithms are very efficient for clustering very large
datasets since these algorithms perform clustering on the grid cells rather
than the individual data points. A typical grid-based clustering algorithm
consists of the following basic steps [111]:

(a) Construct a grid structure by dividing the data space into a finite num-
ber of cells;

(b) Calculate the density for each cell;

(c) Sort the cells based on their densities;

(d) Identify cluster centers;

(e) Traverse neighbor cells.

The STING (STatistical INformation Grid-based) algorithm [250] is a grid-
based clustering algorithm proposed for clustering spatial datasets. STING
was designed for clustering low-dimensional data and can not be scalable for
clustering high-dimensional data. Keim and Hinneburg [157] proposed a grid-
based clustering algorithm, OptiGrid, for clustering high-dimensional data.
Schikuta and Erhart [225] proposed a BANG-clustering algorithm, which is
also a grid-based clustering algorithm. Nagesh and coauthors [192] proposed
a clustering algorithm based on adaptive grids. Other grid-based clustering
algorithms include GRIDCLUS [224], GDILC [275], and WaveCluster [230].

More recently, Qiu and coauthors [209] also proposed a grid-based cluster-
ing algorithm that is capable of dealing with high dimensional datasets. Park
and Lee [203] proposed a grid-based subspace clustering algorithm to cluster
data streams. Lin and coauthors [168] proposed a grid-based clustering al-
gorithm that is less influenced by the size of the grid cells than many other
grid-based clustering algorithms.

5.7.5 Density-Based Clustering Algorithms

Density-based clustering algorithms are a kind of clustering algorithms that
are capable of finding arbitrarily shaped clusters. In density-based clustering,
a cluster is defined as a dense region surrounded by low-density regions. Usu-
ally, density-based clustering algorithms do not require specifying the number
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of clusters since these algorithms can automatically detect clusters and the
number of clusters [70]. One drawback of most density-based clustering algo-
rithm is that it is hard to determine certain parameters, such as the density
threshold.

Popular density-based clustering algorithms include DBSCAN [71] and its
variations and extensions such as GDBSCAN [222], PDBSCAN [263], DBCluC
[270]. BRIDGE [54] is a hybrid clustering algorithm that is based on the k-
means algorithm and DBSCAN. Other density-based clustering algorithms
include DENCLUE [157] and CUBN [248].

5.7.6 Model-Based Clustering Algorithms

Mode-based clustering algorithms are clustering algorithms developed based
on probability models. The term model usually refers to the type of constraints
and geometric properties of the covariance matrices [177]. In model-based clus-
tering, the data are viewed as samples coming from a mixture of probability
distributions, each of which represents a cluster.

In model-based clustering, there are two approaches to formulate a model
for the composite of clusters: the classification likelihood approach and the
mixture likelihood approach [38, 84]. In the classification likelihood approach,
the following objective function

LC(Θ1,Θ2, · · · ,Θk; γ1, γ2, · · · , γn|X) =

n∏
i=1

fγi
(xi|Θγi

)

is maximized, where γi = j if record xi belongs to the jth component or
cluster, Θj (j = 1, 2, · · · , k) are parameters, and X = {x1,x2, · · · ,xn} is a
dataset.

In the mixture likelihood approach, the following objective function

LM (Θ1,Θ2, · · · ,Θk; τ1, τ2, · · · , τk|X) =

n∏
i=1

k∑
j=1

τjfj(xi|Θj)

is maximized, where τj ≥ 0 is the probability that a record belongs to the jth
component and

k∑
j=1

τj = 1.

Some classical and powerful model-based clustering algorithms are based
on Gaussian mixture models [14]. Celeux and Govaert [38] presented sixteen
model-based clustering algorithm based on different constraints on the Gaus-
sian mixture model. These algorithms use the EM algorithm [57, 180] to esti-
mate the parameters.

A survey of data clustering based on a probabilistic and inferential frame-
work can be found in [27]. Some early work on model-based clustering can
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be found in [24], [55], [68], [227], and [256]. Other model-based clustering
algorithms are discussed in [90, Chapter 14].

5.7.7 Subspace Clustering Algorithms

Almost all conventional clustering algorithms do not work well for high di-
mensional datasets due to the following two problems associated with high
dimensional data. First, the distance between any two data points in a high
dimensional space becomes almost the same [20]. Second, clusters of high di-
mensional data are embedded in the subspaces of the data space and different
clusters may exist in different subspaces [7]. Subspace clustering algorithms
are clustering algorithms that are capable of finding clusters embedded in
subspaces of the original data space.

Most subspace clustering algorithms can be classified into two major cat-
egories [204]: top-down algorithms and bottom-up algorithms. In top-down
subspace clustering, a conventional clustering is performed and then the sub-
space of each cluster is evaluated. In bottom-up subspace clustering, dense
regions in low dimensional spaces are identified and then these dense regions
are combined to form clusters.

Examples of top-down subspace clustering algorithms include PART [35],
PROCLUS [4], ORCLUS [5], FINDIT [257], and δ-cluster [264]. Examples of
bottom-up subspace clustering algorithms include CLIQUE [7], ENCLUS [42],
MAFIA [104], CLTree [169], DOC [208], and CBF [39].

There are also some subspace clustering algorithms that do not fit into the
aforementioned categories. For example, the FSC (Fuzzy Subspace Clustering)
algorithm [92, 91] is a subspace clustering, which is very similar to the k-means
algorithm. The FSC algorithm uses a weight to represent the importance of
a dimension or attribute to a cluster and incorporates the weights into the
optimization problem.

Other subspace clustering algorithms include SUBCAD [96], the MSSC
(Mean Shift for Subspace Clustering) algorithm [89, 90], and the grid-based
subspace clustering algorithm [203]. Recent work on subspace clustering is
presented in [58], [95], [152], [158], [191], and [205].

5.7.8 Neural Network-Based Clustering Algorithms

Neural network-based clustering algorithms are related to the concept of com-
petitive learning [86, 112, 113, 220]. There are two types of competitive learn-
ing paradigms: hard competitive learning and soft competitive learning. Hard
competitive learning is also known as winner-take-all or crisp competitive
learning [15, 16]. In hard competitive learning, only a particular winning neu-
ron that matches best with the given input pattern is allowed to learn. In soft
competitive learning, all neurons have the opportunity to learn based on the
input pattern. Hence soft competitive learning is also known as winner-take-
most competitive learning [15, 16].
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Example of neural network-based clustering algorithms include PART [34,
35], which is also a subspace clustering algorithm. The PARTCAT algorithm
[97] is based on PART but was developed for clustering categorical data.
Several other neural network-based clustering algorithms are presented and
discussed in [260].

5.7.9 Fuzzy Clustering Algorithms

Most of the clustering algorithms presented in the previous several subsections
are hard clustering algorithms, which require that each record belongs to
one and only one cluster. Since [269] introduced the concept of fuzzy sets,
fuzzy set theory has been applied to the area of data clustering [18, 221]. In
fuzzy clustering, a record is allowed to belong to two or more clusters with
probabilities.

Examples of fuzzy clustering algorithms include the fuzzy k-means algo-
rithm [21, 22], the fuzzy k-modes algorithm [137], and the c-means algorithm
[66, 67, 87, 124, 125, 142]. For more information about fuzzy clustering, read-
ers are referred to the book by Höppner and and coauthors [130] and the
survey papers [33] and [63].

5.8 Cluster Validity

Cluster validity is a collection of quantitative and qualitative measures that
are used to evaluate and assess the results of clustering algorithms [145, 146].
Cluster validity indices can be defined based on three fundamental criteria:
internal criteria, relative criteria, and external criteria [118, 119, 146, 241].
Both internal and external criteria are related to statistical testing.

In the external criteria approach, the results of a clustering algorithm
are evaluated based on a prespecified structure imposed on the underlying
dataset. Usually, external criteria require using the Monte Carlo simulation
to do the evaluation [119]. Hence cluster validity based on external criteria is
computationally expensive.

In the internal criteria approach, the results of a clustering algorithm are
evaluated based on only quantities and features inherited from the underly-
ing dataset. Cluster validity based on internal criteria can be used to assess
results of hierarchical clustering algorithms as well as partitional clustering
algorithms.

In the relative criteria approach, the results of a clustering algorithm are
evaluated with other clustering results, which are produced by different clus-
tering algorithms or the same algorithm but with different parameters. For
example, a relative criterion is used to compare the results produced the
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k-means algorithm with different parameter k (the number of clusters) in
order to find the best clustering of the dataset.

5.9 Clustering Applications

Data clustering has been applied to many fields. According to [226], data
clustering has been applied to the following five major groups:

(a) Biology and zoology. Clustering algorithms have been used to group
animals and plants and develop taxonomies. In fact, data clustering
algorithms were first developed in this field in which clustering is known
as taxonomy analysis.

(b) Medicine and psychiatry. Clustering algorithms have been used to
group diseases, including mental and physical diseases.

(c) Sociology, criminology, anthropology, and archeology. In fields
in this group, data clustering algorithms have been used to group or-
ganizations, criminals, crimes, and cultures.

(d) Geology, geography, and remote sensing. In fields in this group,
clustering algorithms have been used to group rock samples, sediments,
cities, and land-use patterns.

(e) Information retrieval, pattern recognition, market research,
and economics. Clustering algorithms have been used to analyze im-
ages, documents, industries, consumers, products, and markets.

The above list shows the applications of data clustering about 30 years
ago. Nowadays, data clustering has a very broad applications. For example,
data clustering has been applied to areas such as computational intelligence,
machine learning, electrical engineering, genetics, and insurance [72, 260].

5.10 Literature on Data Clustering

Since the k-means algorithm was first published approximately 50 years ago
[145], thousands of research papers and numerous books on data clustering
have been published. In this section, we highlight some survey papers related
to data clustering. For a comprehensive list of books, journals, and conference
proceedings featuring research on data clustering, readers are directed to [90]
and [94]. Additionally, many clustering algorithms are extensively discussed
in the handbook of cluster analysis [126].
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The following is a list of survey papers related to data clustering since
1971:

1971 A review of classification [46]

1982 A Survey of the Literature of Cluster Analysis [226]

1983 A survey of recent advances in hierarchical clustering algorithms [189]

1984 Counting dendrograms: A survey [190]

1987 A review of hierarchical classification [106]

1988 Recent trends in hierarchic document clustering: A critical review [254]

1993 A survey of fuzzy clustering [265]

1999 Data clustering: A review [144]

1999 A survey of fuzzy clustering algorithms for pattern recognition. I [15]

1999 A survey of fuzzy clustering algorithms for pattern recognition. II [16]

2000 Statistical pattern recognition: A review [147]

2004 Cluster analysis for gene expression data: A survey [151]

2004 Subspace clustering for high dimensional data: A review [204]

2005 Mining data streams: a review [88]

2005 Survey of Clustering Algorithms [261]

2008 A survey of kernel and spectral methods for clustering [78]

2009 Clustering high-dimensional data: A survey on subspace clustering,
pattern-based clustering, and correlation clustering [158]

2009 A survey of Clustering Algorithms [217]

2010 Clustering Algorithms in Biomedical Research: A Review [262]

2010 A Survey of Clustering Algorithms for Graph Data [3]

2011 Spectral methods for graph clustering – A survey [195]

2012 A Survey on Enhanced Subspace Clustering [233]

2013 Data stream clustering: A survey [232]

2013 Functional data clustering: a survey [143]

2014 A Survey of Clustering Algorithms for Big Data: Taxonomy and Em-
pirical Analysis [77]
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2014 A survey on data stream clustering and classification [198]

2014 Model-based clustering of high-dimensional data: A review [31]

2014 A survey on nature inspired metaheuristic algorithms for partitional
clustering [193]

2015 A Comprehensive Survey of Clustering Algorithms [259]

2015 A Survey of Multiobjective Evolutionary Clustering [187]

2015 Time-series clustering – A decade review [6]

2015 Combinatorial clustering: Literature review, methods, examples [165]

2016 A Survey on Feature Weighting Based K-Means Algorithms [56]

2016 A survey on soft subspace clustering [59]

2016 Automatic clustering using nature-inspired metaheuristics: A survey
[154]

2016 Performance Analysis of Various Fuzzy Clustering Algorithms: A Re-
view [108]

2016 Model-Based Clustering [179]

2017 Dominant-set clustering: A review [219]

2017 A review of clustering techniques and developments [223]

2017 Subspace multi-clustering: a review [131]

2017 A comprehensive survey of traditional, merge-split and evolutionary
approaches proposed for determination of cluster number [120]

2018 A review of sparsity-based clustering methods [199]

2018 Multi-view clustering: A survey [266]

2018 Systematic Review of Clustering High-Dimensional and Large Datasets
[202]

2018 A Survey of Clustering With Deep Learning: From the Perspective of
Network Architecture [183]

2018 Triclustering Algorithms for Three-Dimensional Data Analysis: A Com-
prehensive Survey [127]

2018 Cluster ensembles: A survey of approaches with recent extensions and
applications [30]

2019 To cluster, or not to cluster: An analysis of clusterability methods [1]
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2019 Survey of State-of-the-Art Mixed Data Clustering Algorithms [8]

2020 Automatic clustering algorithms: a systematic review and bibliometric
analysis of relevant literature [75]

2020 A survey of density based clustering algorithms [23]

2020 A survey on feature selection approaches for clustering [121]

2020 A survey on parallel clustering algorithms for Big Data [49]

2020 Clustering Categorical Data: A Survey [194]

2021 A Survey on Multiview Clustering [40]

2021 Scalable Clustering Algorithms for Big Data: A Review [175]

2022 A comprehensive survey of clustering algorithms: State-of-the-art ma-
chine learning applications, taxonomy, challenges, and future research
prospects [74]

2022 Data clustering: application and trends [201]

2022 A survey of fuzzy clustering validity evaluation methods [247]

2022 Hierarchical clustering in astronomy [268]

2023 K-means clustering algorithms: A comprehensive review, variants anal-
ysis, and advances in the era of big data [140]

2023 Semi-supervised and un-supervised clustering: A review and experimen-
tal evaluation [239]

2023 Subspace Clustering in High-Dimensional Data Streams: A Systematic
Literature Review [160]

2023 A review on semi-supervised clustering [32]

2024 A survey of genetic algorithms for clustering: Taxonomy and empirical
analysis [215]

2024 Multi-modal data clustering using deep learning: A systematic review
[213]

2024 Deep Clustering: A Comprehensive Survey [214]

2024 Deep image clustering: A survey [133]

2024 A survey on semi-supervised graph clustering [52]

2024 A comprehensive review of clustering techniques in artificial intelligence
for knowledge discovery: Taxonomy, challenges, applications and future
prospects [234]
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2024 Three-way clustering: Foundations, survey and challenges [249]

2024 Survey of spectral clustering based on graph theory [62]

2024 Density peak clustering algorithms: A review on the decade 2014–2023
[251]

2024 Extended multivariate comparison of 68 cluster validity indices. A re-
view [242]

2024 A review on declarative approaches for constrained clustering [53]

2024 Multiple clusterings: Recent advances and perspectives [267]

2024 Breaking down multi-view clustering: A comprehensive review of multi-
view approaches for complex data structures [122]

2025 A survey of evidential clustering: Definitions, methods, and applications
[274]

2025 Cluster validity indices for automatic clustering: A comprehensive re-
view [141]

2025 Feature-weighted fuzzy clustering methods: An experimental review
[105]

5.11 Summary

In this chapter, we introduced some fundamental concepts of data cluster-
ing, discussed various similarity and dissimilarity measures, and provided an
overview of several clustering algorithms. While we did not delve deeply into
most topics, we included references for readers seeking more detailed informa-
tion. Notably, we compiled a list of survey papers related to data clustering,
which serve as valuable resources for further exploration and understanding
of the field.
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Agglomerative Hierarchical
Algorithms

A hierarchical clustering algorithm is a clustering algorithm that divides a
dataset into a sequence of nested partitions. Hierarchical clustering algorithms
can be divided into two categories: agglomerative hierarchical algorithms and
divisive hierarchical algorithms [90].

An agglomerative hierarchical algorithm starts with every single record in
a single cluster and repeats merging the closest pair of clusters according to
some similarity or dissimilarity measure until all records are in one cluster.
In contrast to an agglomerative hierarchical algorithm, a divisive hierarchical
algorithm starts with all records in one cluster and repeats splitting a cluster
into two smaller ones until all clusters contain only a single record.

In this chapter, we introduce the implementation of several agglomerative
hierarchical algorithms. In particular, we focus on agglomerative hierarchical
algorithms that use the Lance-Williams recurrence formula [161, 162].

6.1 Description of the Algorithm

Let {x0,x1, · · · ,xn−1} be a dataset with n records. An agglomerative hierar-
chical algorithm starts with every single record as a cluster. Let Ci = {xi}, i =
0, 2, · · · , n − 1 be the n clusters at the beginning. Cluster Ci(0 ≤ i ≤ n − 1)
contains the record xi. At each step, two clusters that have the minimum
distance are merged to form a new cluster. An agglomerative hierarchical al-
gorithm continues merging clusters until only one cluster is left.

For convenience, we assume that at step 1, a new cluster Cn is formed by
merging two clusters in the initial set of clusters F0 = {C0, C1, · · · , Cn−1}.
Then after step 1 and before step 2, we have a set of clusters F1 = F̃0∪{Cn},
where F̃0 is the set of unmerged clusters in F0. If C0 and C1 have the minimum
distance among all pairs of clusters, for example, then Cn = C0 ∪ C1 and
F̃0 = {C2, C3, · · · , Cn−1} = F0 \ {C0, C1}.

At step 2, a new cluster Cn+1 is formed by merging two clusters in the set
of clusters F1. Similarly, we let F̃1 be the set of unmerged clusters in F1. Then
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after step 2 and before step 3, we have a set of clusters F2 = F̃1 ∪ {Cn+1}.
The algorithm continues this process until at step n − 1 when the last two
clusters are merged to form the cluster C2n−2. After step n − 1, we have
Fn−1 = {C2n−2}, which contains only one cluster. The algorithm stops after
step n− 1.

In the above process, we have |F0| = n, |F1| = n− 1, · · · , and |Fn−1| = 1,
where |·| denotes the number of elements in the set. At each step, the algorithm
merges two clusters. To decide which two clusters to be merged, we need to
calculate the distances between clusters. Lance and Williams [161] proposed
a recurrence formula to compute the distance between an old cluster and a
new cluster formed by two old clusters.

The Lance-Williams formula is defined as follows. Before step i (1 ≤ i <
n − 1), we have a set of clusters Fi−1, which contains n − i + 1 clusters.
Suppose cluster Ci1 and Ci2 have the smallest distance among all the pairs of
clusters in Fi−1. Then Ci1 and Ci2 will be merged to form the cluster Cn+i−1.
The Lance-Williams formula computes the distance between an old cluster
C ∈ ˜Fi−1 = Fi−1 \ {Ci1 , Ci2} as

D(C,Cn+i−1) = D(C,Ci1 ∪ Ci2)

= αi1D(C,Ci1) + αi2D(C,Ci2) + βD(Ci1 , Ci2)

+γ|D(C,Ci1)−D(C,Ci2)|, (6.1)

where αi1 , αi2 , β, and γ are parameters. DuBien and Warde [64] investigated
some properties of the Lance-Williams formula.

TABLE 6.1: Parameters for the Lance-Williams formula, where Σ = |C| +
|Ci1 |+ |Ci2 |.

Algorithm αi1 αi2 β γ

Single linkage 1
2

1
2 0 − 1

2

Complete linkage 1
2

1
2 0 1

2

Group average
|Ci1 |

|Ci1 |+|Ci2 |
|Ci2 |

|Ci1 |+|Ci2 |
0 0

Weighted group average 1
2

1
2 0 0

Centroid
|Ci1 |

|Ci1 |+|Ci2 |
|Ci2 |

|Ci1 |+|Ci2 |
− |Ci1 |·|Ci2 |

(|Ci1 |+|Ci2 |)2
0

Median 1
2

1
2 0 − 1

4

Ward’s method
|C|+|Ci1 |

Σ

|C|+|Ci2 |
Σ − |C|

Σ 0

Table 6.1 gives seven sets of parameters for the Lance-Williams formula
defined in Equation (6.1). Each set of parameters results in an agglomera-
tive hierarchical clustering algorithm. A more general recurrence formula was
proposed by [148] and discussed in [90] and [107].
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The first four algorithms (i.e., single linkage, complete linkage, group aver-
age, and weighted group average) are referred to as graph hierarchical methods
[189]. The last three algorithms (i.e., centroid, median, and Ward’s method)
are referred to as geometric hierarchical methods. The last three algorithms
requires squared Euclidean distance in the Lance-Williams formula. For geo-
metric hierarchical algorithms, the centers of a cluster formed by merging two
clusters can be calculated from the centers of the two merged clusters. In ad-
dition, the distance between two clusters can be calculated from the distance
between centers of the two clusters. Table 6.2 shows the calculation of centers
and distances of clusters for the geometric hierarchical algorithms.

TABLE 6.2: Centers of combined clusters and distances between two clusters
for geometric hierarchical algorithms, where µ(·) denotes a center of a cluster
and Deuc(·, ·) is the Euclidean distance.

Algorithm µ(C1 ∪ C2) D(C1, C2)

Centroid |C1|µ(C1)+|C2|µ(C2)
|C1|+|C2| Deuc(µ(C1), µ(C2))

2

Median µ(C1)+µ(C2)
2 Deuc(µ(C1), µ(C2))

2

Ward’s |C1|µ(C1)+|C2|µ(C2)
|C1|+|C2|

|C1|·|C2|
|C1|+|C2|Deuc(µ(C1), µ(C2))

2

A hierarchical clustering algorithm is said to be monotonic if at each step
we have

D(C,C1 ∪ C2) ≥ D(C1, C2), (6.2)

where C1 and C2 are the two clusters to be merged and C is an unmerged
cluster. The single linkage algorithm and the complete linkage algorithm are
monotonic [153]. However, other agglomerative hierarchical algorithms might
violate the monotonic inequality [182].

6.2 Implementation

Agglomerative clustering algorithms have been implemented in the Python
packages scikit-learn and SciPy. For illustration purpose, we implement
some agglomerative algorithms in this section.

The input to an agglomerative clustering algorithm is a condensed distance
matrix, which can be obtained by calling the pdist function from the SciPy
library. The condensed distance matrix calculated by the pdist function is a
one-dimensional array by combining all the rows from the upper triangle of
the distance matrix. To convert the one-dimensional array to the square form
distance matrix, we can use the squareform function.
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The indices of the square form distance matrix and those of the correspond-
ing one-dimensional array are calculated as follows. Let M be the square form
distance matrix and V be the corresponding one-dimensional array that stores
the upper triangle of M . Let m be the number of rows of M . Then the length

of V is
n(n− 1)

2
. For 0 ≤ i < j < m, the (i, j)th entry of M is saved to the

entry of V with the following index:

mi− (i+ 1)(i+ 2)

2
+ j. (6.3)

The hth entry of V corresponds to the (ih, jh)the entry of M , where ih and
jh are determined as follows:

ih =

⌊
2m− 1−

√
(2m− 1)2 − 8h

2

⌋
, (6.4a)

jh =
(i+ 1)(i+ 2)

2
−mih + h. (6.4b)

The indices given in Equation (6.4) are obtained by letting

h = mi− (i+ 1)(i+ 2)

2
+ j

and solving the following inequalities:

i+ 1 ≤ (i+ 1)(i+ 2)

2
−mi+ h = j ≤ m− 1.

The following Python function implements the conversion of the indices
between M and V :

1 def getInd(ind , m):

2 ind = np.ascontiguousarray(ind)

3 if len(ind) == 2: # convert (i,j) -> h

4 return int(m*ind [0] + ind [1] - (ind [0]+1) *(ind

[0]+2) /2)

5 else: # convert h -> (i, j)

6 i = int(np.floor ((2*m-1-np.sqrt ((2*m-1)**2 - 8*ind

[0]))/2))

7 j = int((i+1)*(i+2)/2 -m*i+ind [0])

8 return (i, j)

If the input to the above function is a tuple (or a list) of coordinates of M ,
the output is the index of V . If the input is an index of V , the output is a
tuple of the coordinates of M .
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6.2.1 The Single Linkage Algorithm

According to the Lance-Williams recurrence formula, the single linkage algo-
rithm calculates the distance between a new cluster Cn+i−1 formed at step i
and an old cluster C as

D(C,Cn+i−1)

= D(C,Ci1 ∪ Ci2)

=
1

2
D(C,Ci1) +

1

2
D(C,Ci2)−

1

2
|D(C,Ci1)−D(C,Ci2)|

= min{D(C,Ci1), D(C,Ci2)}, (6.5)

where Ci1 and Ci2 are the two clusters merged at step i.
Following the C++ code in [94], we can implement the single linkage al-

gorithm in Python as follows:

1 def single(dm):

2 dm2 = squareform(dm)

3 n = dm2.shape [0]

4 unmergedClusters = list(range(0,n))

5 clusterSize = [1] * n

6 res = np.zeros((n-1, 4))

7 for s in range(n-1):

8 m = len(unmergedClusters)

9 R, C = np.triu_indices(m, k=1)

10 dist = dm2[R, C]

11 indMin = np.argmin(dist)

12 dMin = dist[indMin]

13 ij = getInd(indMin , m)

14 s1 = unmergedClusters[ij[0]]

15 s2 = unmergedClusters[ij[1]]

16 size = clusterSize[s1] + clusterSize[s2]

17 res[s,:] = [s1 , s2 , dMin , size]

18 unmergedClusters.remove(s1)

19 unmergedClusters.remove(s2)

20 unmergedClusters.append(n+s)

21 clusterSize.append(size)

22 # update distance matrix

23 m -= 1

24 tmp = np.zeros((m, m))

25 ind = list(range(m+1))

26 ind.remove(ij[0])

27 ind.remove(ij[1])

28 tmp [0:(m-1), 0:(m-1)] = dm2[np.ix_(ind , ind)]

29 tmp [0:(m-1), m-1] = np.minimum(dm2[ind , ij[0]], dm2

[ind , ij[1]])

30 tmp[m-1, 0:(m-1)] = tmp [0:(m-1), m-1]

31 dm2 = tmp

32 return res
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17 res[s,:] = [s1 , s2 , dMin , size]
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22 # update distance matrix

23 m -= 1

24 tmp = np.zeros((m, m))

25 ind = list(range(m+1))

26 ind.remove(ij[0])

27 ind.remove(ij[1])

28 tmp [0:(m-1), 0:(m-1)] = dm2[np.ix_(ind , ind)]

29 tmp [0:(m-1), m-1] = np.minimum(dm2[ind , ij[0]], dm2
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32 return res
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The logic of the above code is similar to that given in [94]. Since Python is
a scripting language, we try to avoid loops as much as possible in the above
implementation. Instead, we use the vectorization feature of NumPy to speed
up the calculation. One drawback of this approach is that we use more memory.

6.2.2 The Complete Linkage Algorithm

The complete linkage algorithm calculates the distance between a new cluster
Cn+i−1 formed at step i and an old cluster C as

D(C,Cn+i−1)

= D(C,Ci1 ∪ Ci2)

=
1

2
D(C,Ci1) +

1

2
D(C,Ci2) +

1

2
|D(C,Ci1)−D(C,Ci2)|

= max{D(C,Ci1), D(C,Ci2)}, (6.6)

where Ci1 and Ci2 are the two clusters merged at step i.
The implementation of the complete linkage algorithm is given below:

1 def complete(dm):

2 dm2 = squareform(dm)

3 n = dm2.shape [0]

4 unmergedClusters = list(range(0,n))

5 clusterSize = [1] * n

6 res = np.zeros((n-1, 4))

7 for s in range(n-1):

8 m = len(unmergedClusters)

9 R, C = np.triu_indices(m, k=1)

10 dist = dm2[R, C]

11 indMin = np.argmin(dist)

12 dMin = dist[indMin]

13 ij = getInd(indMin , m)

14 s1 = unmergedClusters[ij[0]]

15 s2 = unmergedClusters[ij[1]]

16 size = clusterSize[s1] + clusterSize[s2]

17 res[s,:] = [s1 , s2 , dMin , size]

18 unmergedClusters.remove(s1)

19 unmergedClusters.remove(s2)

20 unmergedClusters.append(n+s)

21 clusterSize.append(size)

22 # update distance matrix

23 m -= 1

24 tmp = np.zeros((m, m))

25 ind = list(range(m+1))

26 ind.remove(ij[0])

27 ind.remove(ij[1])

28 tmp [0:(m-1), 0:(m-1)] = dm2[np.ix_(ind , ind)]

29 tmp [0:(m-1), m-1] = np.maximum(dm2[ind , ij[0]], dm2

[ind , ij[1]])
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30 tmp[m-1, 0:(m-1)] = tmp [0:(m-1), m-1]

31 dm2 = tmp

32 return res

The implementation of the complete linkage algorithm is exactly the same
as the single linkage algorithm except that we use the maximum function to
update the distance matrix.

6.2.3 The Group Average Algorithm

The group average algorithm calculates the distance between a new cluster
Cn+i−1 formed at step i and an old cluster C as

D(C,Cn+i−1)

= D(C,Ci1 ∪ Ci2)

=
|Ci1 |

|Ci1 |+ |Ci2 |
D(C,Ci1) +

|Ci2 |
|Ci1 |+ |Ci2 |

D(C,Ci2)

=
|Ci1 | ·D(C,Ci1) + |Ci2 | ·D(C,Ci2)

|Ci1 |+ |Ci2 |
, (6.7)

where Ci1 and Ci2 are the two clusters merged at step i and | · | denotes the
number of elements in the underlying set.

The implementation of the group average algorithm is given below:

1 def average(dm):

2 dm2 = squareform(dm)

3 n = dm2.shape [0]

4 unmergedClusters = list(range(0,n))

5 clusterSize = [1] * n

6 res = np.zeros((n-1, 4))

7 for s in range(n-1):

8 m = len(unmergedClusters)

9 R, C = np.triu_indices(m, k=1)

10 dist = dm2[R, C]

11 indMin = np.argmin(dist)

12 dMin = dist[indMin]

13 ij = getInd(indMin , m)

14 s1 = unmergedClusters[ij[0]]

15 s2 = unmergedClusters[ij[1]]

16 size = clusterSize[s1] + clusterSize[s2]

17 res[s,:] = [s1 , s2 , dMin , size]

18 unmergedClusters.remove(s1)

19 unmergedClusters.remove(s2)

20 unmergedClusters.append(n+s)

21 clusterSize.append(size)

22 # update distance matrix

23 m -= 1
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30 tmp[m-1, 0:(m-1)] = tmp [0:(m-1), m-1]

31 dm2 = tmp

32 return res

The implementation of the complete linkage algorithm is exactly the same
as the single linkage algorithm except that we use the maximum function to
update the distance matrix.

6.2.3 The Group Average Algorithm

The group average algorithm calculates the distance between a new cluster
Cn+i−1 formed at step i and an old cluster C as

D(C,Cn+i−1)

= D(C,Ci1 ∪ Ci2)

=
|Ci1 |

|Ci1 |+ |Ci2 |
D(C,Ci1) +

|Ci2 |
|Ci1 |+ |Ci2 |

D(C,Ci2)

=
|Ci1 | ·D(C,Ci1) + |Ci2 | ·D(C,Ci2)

|Ci1 |+ |Ci2 |
, (6.7)

where Ci1 and Ci2 are the two clusters merged at step i and | · | denotes the
number of elements in the underlying set.

The implementation of the group average algorithm is given below:

1 def average(dm):

2 dm2 = squareform(dm)

3 n = dm2.shape [0]

4 unmergedClusters = list(range(0,n))

5 clusterSize = [1] * n

6 res = np.zeros((n-1, 4))

7 for s in range(n-1):

8 m = len(unmergedClusters)

9 R, C = np.triu_indices(m, k=1)

10 dist = dm2[R, C]

11 indMin = np.argmin(dist)

12 dMin = dist[indMin]

13 ij = getInd(indMin , m)

14 s1 = unmergedClusters[ij[0]]

15 s2 = unmergedClusters[ij[1]]

16 size = clusterSize[s1] + clusterSize[s2]

17 res[s,:] = [s1 , s2 , dMin , size]

18 unmergedClusters.remove(s1)

19 unmergedClusters.remove(s2)

20 unmergedClusters.append(n+s)

21 clusterSize.append(size)

22 # update distance matrix

23 m -= 1
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24 tmp = np.zeros((m, m))

25 ind = list(range(m+1))

26 ind.remove(ij[0])

27 ind.remove(ij[1])

28 tmp [0:(m-1), 0:(m-1)] = dm2[np.ix_(ind , ind)]

29 tmp [0:(m-1), m-1] = (clusterSize[s1]*dm2[ind , ij

[0]] + clusterSize[s2]*dm2[ind , ij[1]])/size

30 tmp[m-1, 0:(m-1)] = tmp [0:(m-1), m-1]

31 dm2 = tmp

32 return res

6.2.4 The Weighted Group Average Algorithm

The weighted group average algorithm is also called the weighted pair group
method using arithmetic average [146]. According to the Lance-Williams re-
currence formula, the weighted group average algorithm calculates the dis-
tance between a new cluster Cn+i−1 formed at step i and an old cluster
C as

D(C,Cn+i−1) = D(C,Ci1 ∪ Ci2)

=
1

2
D(C,Ci1) +

1

2
D(C,Ci2), (6.8)

where Ci1 and Ci2 are the two clusters merged at step i.
The implementation of the weighted group average algorithm is given

below:

1 def weighted(dm):

2 dm2 = squareform(dm)

3 n = dm2.shape [0]

4 unmergedClusters = list(range(0,n))

5 clusterSize = [1] * n

6 res = np.zeros((n-1, 4))

7 for s in range(n-1):

8 m = len(unmergedClusters)

9 R, C = np.triu_indices(m, k=1)

10 dist = dm2[R, C]

11 indMin = np.argmin(dist)

12 dMin = dist[indMin]

13 ij = getInd(indMin , m)

14 s1 = unmergedClusters[ij[0]]

15 s2 = unmergedClusters[ij[1]]

16 size = clusterSize[s1] + clusterSize[s2]

17 res[s,:] = [s1 , s2 , dMin , size]

18 unmergedClusters.remove(s1)

19 unmergedClusters.remove(s2)

20 unmergedClusters.append(n+s)

21 clusterSize.append(size)
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22 # update distance matrix

23 m -= 1

24 tmp = np.zeros((m, m))

25 ind = list(range(m+1))

26 ind.remove(ij[0])

27 ind.remove(ij[1])

28 tmp [0:(m-1), 0:(m-1)] = dm2[np.ix_(ind , ind)]

29 tmp [0:(m-1), m-1] = (dm2[ind , ij[0]] + dm2[ind , ij

[1]]) /2

30 tmp[m-1, 0:(m-1)] = tmp [0:(m-1), m-1]

31 dm2 = tmp

32 return res

6.2.5 The Centroid Algorithm

The centroid algorithm is also called the unweighted pair group method using
centroids [146]. According to the Lance-Williams recurrence formula, the cen-
troid algorithm calculates the distance between a new cluster Cn+i−1 formed
at step i and an old cluster C as

D(C,Cn+i−1)

= D(C,Ci1 ∪ Ci2)

=
|Ci1 |

|Ci1 |+ |Ci2 |
D(C,Ci1) +

|Ci2 |
|Ci1 |+ |Ci2 |

D(C,Ci2)

− |Ci1 | · |Ci2 |
(|Ci1 |+ |Ci2 |)2

D(Ci1 , Ci2), (6.9)

where Ci1 and Ci2 are the two clusters merged at step i, and D(·, ·) is the
squared Euclidean distance defined in Equation (5.7).

The implementation of the centroid algorithm is given below:

1 def centroid(dm):

2 dm2 = squareform(np.square(dm))

3 n = dm2.shape [0]

4 unmergedClusters = list(range(0,n))

5 clusterSize = [1] * n

6 res = np.zeros((n-1, 4))

7 for s in range(n-1):

8 m = len(unmergedClusters)

9 R, C = np.triu_indices(m, k=1)

10 dist = dm2[R, C]

11 indMin = np.argmin(dist)

12 dMin = np.sqrt(dist[indMin ])

13 ij = getInd(indMin , m)

14 s1 = unmergedClusters[ij[0]]

15 s2 = unmergedClusters[ij[1]]

16 size = clusterSize[s1] + clusterSize[s2]
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22 # update distance matrix

23 m -= 1
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29 tmp [0:(m-1), m-1] = (dm2[ind , ij[0]] + dm2[ind , ij

[1]]) /2

30 tmp[m-1, 0:(m-1)] = tmp [0:(m-1), m-1]

31 dm2 = tmp

32 return res
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The centroid algorithm is also called the unweighted pair group method using
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D(C,Cn+i−1)

= D(C,Ci1 ∪ Ci2)

=
|Ci1 |

|Ci1 |+ |Ci2 |
D(C,Ci1) +

|Ci2 |
|Ci1 |+ |Ci2 |

D(C,Ci2)
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D(Ci1 , Ci2), (6.9)

where Ci1 and Ci2 are the two clusters merged at step i, and D(·, ·) is the
squared Euclidean distance defined in Equation (5.7).

The implementation of the centroid algorithm is given below:

1 def centroid(dm):

2 dm2 = squareform(np.square(dm))

3 n = dm2.shape [0]

4 unmergedClusters = list(range(0,n))

5 clusterSize = [1] * n

6 res = np.zeros((n-1, 4))

7 for s in range(n-1):

8 m = len(unmergedClusters)

9 R, C = np.triu_indices(m, k=1)

10 dist = dm2[R, C]

11 indMin = np.argmin(dist)

12 dMin = np.sqrt(dist[indMin ])

13 ij = getInd(indMin , m)

14 s1 = unmergedClusters[ij[0]]

15 s2 = unmergedClusters[ij[1]]

16 size = clusterSize[s1] + clusterSize[s2]
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17 res[s,:] = [s1 , s2 , dMin , size]

18 unmergedClusters.remove(s1)

19 unmergedClusters.remove(s2)

20 unmergedClusters.append(n+s)

21 clusterSize.append(size)

22 # update distance matrix

23 m -= 1

24 tmp = np.zeros((m, m))

25 ind = list(range(m+1))

26 ind.remove(ij[0])

27 ind.remove(ij[1])

28 tmp [0:(m-1), 0:(m-1)] = dm2[np.ix_(ind , ind)]

29 tmp [0:(m-1), m-1] = (clusterSize[s1]*dm2[ind , ij

[0]] + clusterSize[s2]*dm2[ind , ij[1]] -

clusterSize[s1]* clusterSize[s2]*dm2[ij[0], ij

[1]]/ size)/size

30 tmp[m-1, 0:(m-1)] = tmp [0:(m-1), m-1]

31 dm2 = tmp

32 return res

The implementation of the centroid algorithm is different from those of the
previous agglomerative algorithms in several places. First, the distance is
changed to squared Euclidean distance. However, the distance saved to the
dendrogram is still the Euclidean distance.

6.2.6 The Median Algorithm

The median algorithm has another name, which is called the weighted pair
group method using centroids [146]. According to the Lance-Williams recur-
rence formula, the median algorithm calculates the distance between a new
cluster Cn+i−1 formed at step i and an old cluster C as

D(C,Cn+i−1)

= D(C,Ci1 ∪ Ci2)

=
1

2
D(C,Ci1) +

1

2
D(C,Ci2)−

1

4
D(Ci1 , Ci2), (6.10)

where Ci1 and Ci2 are the two clusters merged at step i, and D(·, ·) is the
squared Euclidean distance defined in Equation (5.7).

Similar to the centroid algorithm, the median algorithm is implemented
as follows:

1 def median(dm):

2 dm2 = squareform(np.square(dm))

3 n = dm2.shape [0]

4 unmergedClusters = list(range(0,n))

5 clusterSize = [1] * n

6 res = np.zeros((n-1, 4))
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7 for s in range(n-1):

8 m = len(unmergedClusters)

9 R, C = np.triu_indices(m, k=1)

10 dist = dm2[R, C]

11 indMin = np.argmin(dist)

12 dMin = np.sqrt(dist[indMin ])

13 ij = getInd(indMin , m)

14 s1 = unmergedClusters[ij[0]]

15 s2 = unmergedClusters[ij[1]]

16 size = clusterSize[s1] + clusterSize[s2]

17 res[s,:] = [s1 , s2 , dMin , size]

18 unmergedClusters.remove(s1)

19 unmergedClusters.remove(s2)

20 unmergedClusters.append(n+s)

21 clusterSize.append(size)

22 # update distance matrix

23 m -= 1

24 tmp = np.zeros((m, m))

25 ind = list(range(m+1))

26 ind.remove(ij[0])

27 ind.remove(ij[1])

28 tmp [0:(m-1), 0:(m-1)] = dm2[np.ix_(ind , ind)]

29 tmp [0:(m-1), m-1] = dm2[ind , ij [0]]/2 + dm2[ind , ij

[1]]/2 - dm2[ij[0], ij [1]]/4

30 tmp[m-1, 0:(m-1)] = tmp [0:(m-1), m-1]

31 dm2 = tmp

32 return res

6.2.7 Ward’s Algorithm

The Ward’s algorithm was proposed by [252] and [253]. This algorithm aims
to minimize the loss of information associated with each merging. Hence the
Ward’s algorithm is also referred to as the “minimum variance” method.

According to the Lance-Williams recurrence formula, the Ward’s algorithm
algorithm calculates the distance between a new cluster Cn+i−1 formed at step
i and an old cluster C as

D(C,Cn+i−1)

= D(C,Ci1 ∪ Ci2)

=
|C|+ |Ci1 |

|C|+ |Ci1 |+ |Ci2 |
D(C,Ci1) +

|C|+ |Ci2 |
|C|+ |Ci1 |+ |Ci2 |

D(C,Ci2)

− |C|
|C|+ |Ci1 |+ |Ci2 |

D(Ci1 , Ci2), (6.11)

where Ci1 and Ci2 are the two clusters merged at step i, and D(·, ·) is the
squared Euclidean distance defined in Equation (5.7).
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7 for s in range(n-1):
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31 dm2 = tmp

32 return res

6.2.7 Ward’s Algorithm

The Ward’s algorithm was proposed by [252] and [253]. This algorithm aims
to minimize the loss of information associated with each merging. Hence the
Ward’s algorithm is also referred to as the “minimum variance” method.

According to the Lance-Williams recurrence formula, the Ward’s algorithm
algorithm calculates the distance between a new cluster Cn+i−1 formed at step
i and an old cluster C as

D(C,Cn+i−1)

= D(C,Ci1 ∪ Ci2)

=
|C|+ |Ci1 |

|C|+ |Ci1 |+ |Ci2 |
D(C,Ci1) +

|C|+ |Ci2 |
|C|+ |Ci1 |+ |Ci2 |

D(C,Ci2)

− |C|
|C|+ |Ci1 |+ |Ci2 |

D(Ci1 , Ci2), (6.11)

where Ci1 and Ci2 are the two clusters merged at step i, and D(·, ·) is the
squared Euclidean distance defined in Equation (5.7).
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The Ward’s algorithm is implemented as follows:

1 def ward(dm):

2 dm2 = squareform(np.square(dm))

3 n = dm2.shape [0]

4 unmergedClusters = list(range(0,n))

5 clusterSize = [1] * n

6 res = np.zeros((n-1, 4))

7 for s in range(n-1):

8 m = len(unmergedClusters)

9 R, C = np.triu_indices(m, k=1)

10 dist = dm2[R, C]

11 indMin = np.argmin(dist)

12 dMin = np.sqrt(dist[indMin ])

13 ij = getInd(indMin , m)

14 s1 = unmergedClusters[ij[0]]

15 s2 = unmergedClusters[ij[1]]

16 size = clusterSize[s1] + clusterSize[s2]

17 res[s,:] = [s1 , s2 , dMin , size]

18 unmergedClusters.remove(s1)

19 unmergedClusters.remove(s2)

20 unmergedClusters.append(n+s)

21 clusterSize.append(size)

22 # update distance matrix

23 m -= 1

24 tmp = np.zeros((m, m))

25 ind = list(range(m+1))

26 ind.remove(ij[0])

27 ind.remove(ij[1])

28 ind2 = unmergedClusters [0: -1]

29 tmp [0:(m-1), 0:(m-1)] = dm2[np.ix_(ind , ind)]

30 size2 = np.array([ clusterSize[i] for i in ind2])

31 tmp [0:(m-1), m-1] = np.divide( np.multiply(size2+

clusterSize[s1], dm2[ind , ij[0]]) + np.multiply

(size2+clusterSize[s2], dm2[ind , ij [1]]) -

size2 * dm2[ij[0], ij[1]], size2+clusterSize[s1

]+ clusterSize[s2])

32 tmp[m-1, 0:(m-1)] = tmp [0:(m-1), m-1]

33 dm2 = tmp

34 return res

In the above implementation, we use the NumPy functions divide and
multiply to perform element-wise operations on arrays.
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6.3 Examples

In this section, we present some examples of applying the agglomerative hier-
archical clustering algorithms implemented in the previous section. In partic-
ular, we will compare the results produced by our code with those produced
by the agglomerative algorithms provided by the SciPy library.

To test our implementations and perform the comparison, we use the Iris
dataset from the UCI machine learning repository. First, let us load the nec-
essary libraries by executing the following code:

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 import scipy.cluster.hierarchy as hierarchy

5 from scipy.spatial.distance import pdist , squareform

6 from ucimlrepo import fetch_ucirepo

Then we load the Iris dataset and calculate the distance matrix as follows:

1 iris = fetch_ucirepo(id=53)

2 X = iris.data.features

3 dm = pdist(X)

The distance matrix dm is a condensed distance matrix.
After executing all the code given in the previous section, we will have the

Python functions single, complete, group, weighted, centroid, median,
and ward. Those functions correspond to different agglomerative clustering
algorithms.

Now we can test the single linkage clustering algorithm with the Iris dataset
as follows:

1 Z1 = single(dm)

2 Z1b = hierarchy.linkage(dm , 'single ')
3

4 fig , axes = plt.subplots(2, 1, figsize =(8, 8))

5 dn1 = hierarchy.dendrogram(Z1 , ax=axes[0], no_labels=True ,

color_threshold =0, above_threshold_color="black")

6 dn1b = hierarchy.dendrogram(Z1b , ax=axes[1], no_labels=True

, color_threshold =0, above_threshold_color="black")

7 fig.savefig("single.pdf", bbox_inches='tight ')

The first dendrogram Z1 is produced by our code. The second dendrogram Z1b

is produced by the SciPy library. Figure 6.1 shows these two dendrograms.
From the figure, we see that the two dendrograms are almost the same. How-
ever, they have some slight differences, which are caused by the merging of
clusters that have same distances to other clusters.
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FIGURE 6.1: Dendrograms produced by the single linkage clustering algo-
rithm. The top dengrogram is produced by code from this book. The bottom
one is produced by the SciPy library.

To test the complete linkage algorithm, we use the following code:

1 Z1 = complete(dm)

2 Z1b = hierarchy.linkage(dm , 'complete ')
3

4 fig , axes = plt.subplots(2, 1, figsize =(8, 8))

5 dn1 = hierarchy.dendrogram(Z1 , ax=axes[0], no_labels=True ,

color_threshold =0, above_threshold_color="black")

6 dn1b = hierarchy.dendrogram(Z1b , ax=axes[1], no_labels=True

, color_threshold =0, above_threshold_color="black")

7 fig.savefig("complete.pdf", bbox_inches='tight ')

The dendrograms produced by the complete linkage algorithm are shown in
Figure 6.2. From the figure, we see that the dendrogram produced by our code
matches that produced by the SciPy library. It is hard to notice the difference.
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FIGURE 6.2: Dendrograms produced by the complete linkage clustering algo-
rithm. The top dengrogram is produced by code from this book. The bottom
one is produced by the SciPy library.

To cluster the Iris dataset using the group average algorithm, we can use
the following code:

1 Z1 = average(dm)

2 Z1b = hierarchy.linkage(dm , 'average ')
3

4 fig , axes = plt.subplots(2, 1, figsize =(8, 8))

5 dn1 = hierarchy.dendrogram(Z1 , ax=axes[0], no_labels=True ,

color_threshold =0, above_threshold_color="black")

6 dn1b = hierarchy.dendrogram(Z1b , ax=axes[1], no_labels=True

, color_threshold =0, above_threshold_color="black")

7 fig.savefig("average.pdf", bbox_inches='tight')
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FIGURE 6.2: Dendrograms produced by the complete linkage clustering algo-
rithm. The top dengrogram is produced by code from this book. The bottom
one is produced by the SciPy library.

To cluster the Iris dataset using the group average algorithm, we can use
the following code:

1 Z1 = average(dm)

2 Z1b = hierarchy.linkage(dm , 'average ')
3

4 fig , axes = plt.subplots(2, 1, figsize =(8, 8))

5 dn1 = hierarchy.dendrogram(Z1 , ax=axes[0], no_labels=True ,

color_threshold =0, above_threshold_color="black")

6 dn1b = hierarchy.dendrogram(Z1b , ax=axes[1], no_labels=True

, color_threshold =0, above_threshold_color="black")

7 fig.savefig("average.pdf", bbox_inches='tight')

Examples 119

The resulting dendrograms obtained by the group average clustering algorithm
are shown in Figure 6.3.
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FIGURE 6.3: Dendrograms produced by the group average clustering algo-
rithm. The top dengrogram is produced by code from this book. The bottom
one is produced by the SciPy library.

To cluster the Iris dataset using the weighted group average algorithm, we
can use the following code:

1 Z1 = weighted(dm)

2 Z1b = hierarchy.linkage(dm , 'weighted ')
3

4 fig , axes = plt.subplots(2, 1, figsize =(8, 8))

5 dn1 = hierarchy.dendrogram(Z1 , ax=axes[0], no_labels=True ,

color_threshold =0, above_threshold_color="black")

6 dn1b = hierarchy.dendrogram(Z1b , ax=axes[1], no_labels=True

, color_threshold =0, above_threshold_color="black")

7 fig.savefig("weighted.pdf", bbox_inches='tight ')
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Figure 6.4 shows the dendrograms produced by the weighted group average
algorithm.
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FIGURE 6.4: Dendrograms produced by the weighted group average clustering
algorithm. The top dengrogram is produced by code from this book. The
bottom one is produced by the SciPy library.

The centroid algorithm, the median algorithm, and the Ward’s algorithm
use squared Euclidean distances to calculate the distances between merged
clusters and other clusters. We will just test one of these algorithm and let
the reader to test the other algorithms. Let us test the Ward’s algorithm as
follows:

1 Z1 = ward(dm)

2 Z1b = hierarchy.linkage(dm , 'ward')
3

4 fig , axes = plt.subplots(2, 1, figsize =(8, 8))

5 dn1 = hierarchy.dendrogram(Z1 , ax=axes[0], no_labels=True ,
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Figure 6.4 shows the dendrograms produced by the weighted group average
algorithm.
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FIGURE 6.4: Dendrograms produced by the weighted group average clustering
algorithm. The top dengrogram is produced by code from this book. The
bottom one is produced by the SciPy library.

The centroid algorithm, the median algorithm, and the Ward’s algorithm
use squared Euclidean distances to calculate the distances between merged
clusters and other clusters. We will just test one of these algorithm and let
the reader to test the other algorithms. Let us test the Ward’s algorithm as
follows:

1 Z1 = ward(dm)
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3

4 fig , axes = plt.subplots(2, 1, figsize =(8, 8))

5 dn1 = hierarchy.dendrogram(Z1 , ax=axes[0], no_labels=True ,
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color_threshold =0, above_threshold_color="black")

6 dn1b = hierarchy.dendrogram(Z1b , ax=axes[1], no_labels=True

, color_threshold =0, above_threshold_color="black")

7 fig.savefig("ward.pdf", bbox_inches='tight ')

The resulting dendrograms produced by Ward’s algorithm are shown in Figure
6.5. Again, the dendrogram produced by our code matches that produced by
the SciPy library.
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FIGURE 6.5: Dendrograms produced by the Ward’s clustering algorithm. The
top dengrogram is produced by code from this book. The bottom one is pro-
duced by the SciPy library.

Hierarchical clusters can be converted to flat clusters by cutting the den-
drogram. For example, the function fcluster from the SciPy library can be
used to form flat clusters from a dendrogram. The following Python code
illustrates how to create flat clusters from a dendrogram:
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1 y = iris.data.targets

2 ms1 = hierarchy.fcluster(Z1 , t=6.5, criterion='distance ')
3 cm1 = createCM(y, ms1)

4 print(cm1)

The function createCM is used to create a confusion matrix from the observed
labels and the predicted labels. The code of this function is given in Listing 6.1.
For the Ward’s algorithm, the confusion matrix obtained by the above code
is given below:

1 1 2 3

2 Iris -setosa 50 0 0

3 Iris -versicolor 0 1 49

4 Iris -virginica 0 35 15

The confusion matrix is implemented as a Pandas data frame. The confusion
matrix shows that 16 records of the Iris dataset are misclassified by the Ward’s
algorithm.

1 def createCM(y, yhat):

2 y = np.ascontiguousarray(y)

3 yhat = np.ascontiguousarray(yhat)

4 labelr = np.unique(y)

5 labelc = np.unique(yhat)

6 nrow = len(labelr)

7 ncol = len(labelc)

8 cm = pd.DataFrame(np.zeros ((nrow , ncol), dtype=np.int32

), index=labelr , columns=labelc)

9 for i in range(len(y)):

10 cm.loc[y[i], yhat[i]] += 1

11 return cm

Listing 6.1: Python code used to create a confusion matrix from observed
labels and predicted lables.

6.4 Summary

In this chapter, we presented the implementation of several agglomerative
hierarchical clustering algorithms based on the Lance-Williams framework.
We also presented examples of applying these agglomerative hierarchical al-
gorithms to a synthetic dataset and the Iris dataset. In our examples, we
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only tried the Euclidean distance to calculate the pair-wise distances between
records and tried to get a partition of maximum three clusters from the hier-
archical clustering tree. We encourage users to try other distances and apply
these algorithms to cluster other datasets.
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A Divisive Hierarchical
Clustering Algorithm

Hierarchical clustering algorithms can be agglomerative or divisive. In the
previous chapter, we implemented several agglomerative hierarchical clus-
tering algorithms. In this chapter, we implement a divisive hierarchical
clustering algorithm, DIANA (DIVisive ANAlysis), which was described in
[156, Chapter 6].

7.1 Description of the Algorithm

DIANA (DIVisive ANAlysis) is a divisive hierarchical clustering algorithm
based on the idea of [173]. Given a dataset consisting of n records, there are
2n−1 − 1 ways to divide the dataset into two nonempty groups. The DIANA
algorithm does not consider all these divisions.

Precisely, let X = {x1,x1, · · · ,xn−1} be a dataset with n records. At the
beginning, all the n records are in one cluster. In the first step, the algorithm
divides the dataset into two groups using some iterative process. To do this,
the algorithm first finds the record that has the greatest average distance
to the rest records. The average distance between record xi to the rest is
calculated as

Di =
1

n− 1

n−1∑
j=0,j ̸=i

D(xi,xj),

where D(·, ·) is some distance measure.
Suppose D1 = max0≤i≤n−1 Di, i.e., x0 has the greatest average distance to

the rest records in the dataset. Then x0 is first spitted from the dataset. Then
we have two groups now: G1 = {x0} and G2 = X \G1 = {x1,x2, · · · ,xn−1}.
Then the algorithm checks every record in G2 to see if the record should be
moved to G1. To do this, the algorithm calculates the distance between x and
G1 and the distance between x and G2 \ {x} for all x ∈ G2. The distance
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between x and G1 is calculated as

DG1(x) =
1

|G1|
∑
y∈G1

D(x,y), x ∈ G2 (7.1)

where |G1| denotes the number of records in G1. The distance between x and
G2 \ {x} is calculated as

DG2
(x) =

1

|G2| − 1

∑
y∈G2

D(x,y). x ∈ G2 (7.2)

If DG1(x) < DG2(x), then x is moved from G2 to G1. The algorithm
continues checking all other records in G2 until no records should be moved.
At this stage, the dataset is divided into two clusters: G1 and G2.

In the second step, the algorithm first finds the cluster that has the largest
diameter. The diameter of a cluster is defined as the maximum distance be-
tween any two records in the cluster. That is,

Diam(G) = max
x,y∈G

D(x,y). (7.3)

If Diam(G1) > Diam(G2), then the algorithm applies the process described
in the first step to divide cluster G1 into two clusters: G3 and G4.

The algorithm repeats the above procedure until every cluster contains
only one record. The algorithm can finish the process in n− 1 steps.

7.2 Implementation

To implement the divisive hierarchical clustering algorithm, we need to assign
a unique identifier to each cluster in the hierarchical clustering tree and a
level to these clusters. To do this, we follow the same approach we used to
implement the agglomerative hierarchical clustering algorithms. That is, given
a dataset X = {x0,x1, · · · ,xn−1}, the initial cluster that contains all the
records has an identifier of 2n− 2. We denote the first cluster by X2n−2.

At the first step, X2n−2 is divided into two clusters. If all the two clusters
have more than one record, then the two clusters are denoted as X2n−3 and
X2n−4. If one of the two clusters has only one record, then we denote the one-
record cluster by Xi if the cluster contains xi. If the other cluster contains
more than one record, then we denote the other cluster by X2n−3. At the
end, the clustering tree includes clusters X2n−2, X2n−3, · · · , Xn−1, · · · , and
X0. The clusters X0, X1, · · · , Xn−1 are one-record clusters. All other clusters
contain more than one record.



126 A Divisive Hierarchical Clustering Algorithm

In Python, we implement the DIANA algorithm as follows:

1 def diana(dm):

2 dm2 = squareform(dm)

3 n = dm2.shape [0]

4 clusterDiameter = [0] * (2*n-1)

5 clusterMember = [[]] * (2*n-1)

6 clusterDiameter [2*n-2] = np.max(dm)

7 clusterMember [2*n-2] = [i for i in range(n)]

8 unsplitClusters = [2*n-2]

9 res = np.zeros((n-1, 4))

10 res[n-2, 2:4] = [clusterDiameter [2*n-2], n]

11 for s in range(n-2,-1,-1):

12 diam =[ clusterDiameter[i] for i in unsplitClusters]

13 indMax = np.argmax(diam)

14 s0 = unsplitClusters[indMax]

15 ms0 = clusterMember[s0]

16 ms1 , ms2 = split(dm2 , ms0)

17 if len(ms1) > 1:

18 s1 = 2*n - 2 - clusterMember [:: -1]. index ([])

19 clusterMember[s1] = ms1

20 clusterDiameter[s1] = np.max(dm2[np.ix_(ms1 ,

ms1)])

21 res[s1 -n, 2:4] = [clusterDiameter[s1], len(ms1)

]

22 unsplitClusters.append(s1)

23 else:

24 s1 = ms1 [0]

25 if len(ms2) > 1:

26 s2 = 2*n - 2 - clusterMember [:: -1]. index ([])

27 clusterMember[s2] = ms2

28 clusterDiameter[s2] = np.max(dm2[np.ix_(ms2 ,

ms2)])

29 res[s2 -n, 2:4] = [clusterDiameter[s2], len(ms2)

]

30 unsplitClusters.append(s2)

31 else:

32 s2 = ms2 [0]

33 res[s0 -n, 0:2] = [s1 , s2]

34 unsplitClusters.remove(s0)

35 return res

In the above code, we use the list clusterDiameter to store the diameters of
all clusters. We use a list of lists to store cluster members. For a dataset with
n records, there will be 2n − 1 clusters, which are indexed from 0 to 2n − 2.
Clusters with indices from 0 to n−1 are singleton clusters. The function used
to split a cluster is defined in Listing 7.1.
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1 def split(dm , ms):

2 dm2 = dm[np.ix_(ms , ms)]

3 dist = np.sum(dm2 , axis =0)

4 indMax = np.argmax(dist)

5 ms1 = [ms[indMax ]]

6 ms2 = ms.copy()

7 ms2.remove(ms[indMax ])

8 bChanged = True

9 while bChanged:

10 bChanged = False

11 if len(ms2) == 1:

12 break

13 for s in ms2:

14 dist1 = np.sum(dm[s, ms1])/len(ms1)

15 dist2 = np.sum(dm[s, ms2])/(len(ms2) -1)

16 if dist1 < dist2:

17 bChanged = True

18 ms1.append(s)

19 ms2.remove(s)

20 break

21 return ms1 , ms2

Listing 7.1: The function used to split a cluster into two.

The logic of the above Python code is similar to that of the C++ code
given in [94].

7.3 Examples

In this section, we apply the DIANA algorithm implemented in the previous
section to the Iris dataset.

First, we load the necessary Python libraries by running the following code:

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 import scipy.cluster.hierarchy as hierarchy

5 from scipy.spatial.distance import pdist , squareform

6 from ucimlrepo import fetch_ucirepo
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4

5 Z = diana(dm)
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6

7 fig , axes = plt.subplots(1, 1, figsize =(8, 4))

8 dn1 = hierarchy.dendrogram(Z, ax=axes , no_labels=True ,

color_threshold =0, above_threshold_color="black")

9 fig.savefig("diana.pdf", bbox_inches='tight ')

0

1

2

3

4

5

6

7

FIGURE 7.1: The dendrogram produced by applying the DIANA algorithm
in Python to the Iris dataset.

The resulting dendrogram is shown in Figure 7.1. The dendrogram pro-
duced by the C++ code given in [94] is shown in Figure 7.2. The two dendro-
grams are the same except for the orientation and the vertical scale.

We can convert hierarchical clusters to flat clusters and then obtain the
confusion matrix as follows:

1 y = iris.data.targets

2 ms1 = hierarchy.fcluster(Z, t=3.5, criterion='distance ')
3 cm1 = createCM(y, ms1)

4 print(cm1)

The function createCM is defined in Listing 6.1. Executing the above block of
code gives the following output:

1 1 2 3

2 Iris -setosa 0 0 50

3 Iris -versicolor 5 45 0

4 Iris -virginica 36 14 0

The confusion matrix shows that 19 records are misclassified by the DIANA
algorithm.
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FIGURE 7.2: The dendrogram produced by applying the DIANA algorithm
in C++ to the Iris dataset.

7.4 Summary

In this chapter, we implemented a divisive hierarchical clustering algorithm
in Python. Examples to illustrate the DIANA algorithm were also presented.

The DIANA algorithm was based on the idea presented in [173]. However,
the original idea is to split all available clusters. Kaufman and Rousseeuw [156]
modified this original method by defining the diameter for a cluster and first
splitting the cluster with the largest diameter. The modified method produces
a monotonic hierarchical clustering. One drawback of this modified method is
that it is sensitive to outliers.
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The k-means Algorithm

The k-means algorithm is the most popular and the simplest partitional clus-
tering algorithm [145]. The k-means algorithm has many variations (see Sec-
tion 5.7). In this chapter, we implement the standard k-means algorithm.

8.1 Description of the Algorithm

Let X = {x0,x1, · · · ,xn−1} be a numeric dataset containing n records and k
be an integer in {1, 2, · · ·n}. The k-means algorithm tries to divide the dataset
into k clusters C0, C1, · · · , and Ck−1 by minimizing the following objective
function

E =
k−1∑
i=1

∑
x∈Ci

D(x,µi), (8.1)

where D(·, ·) is a distance measure and µ(Ci) is the mean of cluster Ci, i.e.,

µi =
1

|Ci|
∑
x∈Ci

x.

Let γi be the cluster membership of record xi for i = 0, 1, · · · , n− 1. That
is, γi = j if xi belongs to cluster Cj . Then Equation (8.1) can be rewirtten as

E =
n−1∑
i=0

D(xi,µγi
). (8.2)

To minimize the objective function, the k-means algorithm employs an
iterative process. At the beginning, the k-means algorithm select k random
records from the dataset X as initial cluster centers.

Suppose µ
(0)
0 , µ

(0)
1 , · · · , and µ

(0)
k−1 are the initial cluster centers. Based on

these cluster centers, the k-means algorithm updates the cluster memberships

γ
(0)
0 , γ

(0)
1 , · · · , γ(0)

n−1 as follows:

γ
(0)
i = argmin

0≤j≤k−1
D(xi,µ

(0)
j ), (8.3)
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where argmin is the argument that minimizes the distance. That is, γ
(0)
i is set

to the index of the cluster to which xi has the smallest distance.
Based on the cluster memberships γ

(0)
0 , γ

(0)
1 , · · · , γ(0)

n−1, the k-means algo-
rithm updates the cluster centers as follows:

µ
(1)
j =

1

|{i : γ(0)
i = j}|

n−1∑

i=0,γ
(0)
i =j

xi, j = 0, 1, · · · , k − 1. (8.4)

Then the k-means algorithm repeats updating the cluster memberships
based on Equation (8.3) and updating the cluster centers based on Equation
(8.4) until some condition is satisfied. For example, the k-means algorithm
stops when the cluster memberships do not change any more.

8.2 Implementation

To implement the standard k-means algorithm described in the previous sec-
tion, we follow the logic of the C++ code given in [94].

In Python, we implement the k-means algorithm as follows:

1 def kmeans(X, k=3, maxit =100):

2 X = np.ascontiguousarray(X)

3 n, d = X.shape

4 ind = np.random.choice(n, k, replace=False)

5 clusterCenters = X[ind ,:]

6 dm = np.zeros ((n,k))

7 for i in range(k):

8 dm[:,i] = np.sum(np.square(X-clusterCenters[i,:]),

axis =1)

9 clusterMembership = np.argmin(dm, axis =1)

10 numIter = 1

11 while numIter < maxit:

12 # update cluster centers

13 for i in range(k):

14 bInd = clusterMembership ==i

15 if np.any(bInd):

16 clusterCenters[i,:] = np.mean(X[bInd], axis

=0)

17 else:

18 clusterCenters[i,:] = X[np.random.randint

(0, n) ,:]

19 # update cluster membership

20 clusterMembership_ = clusterMembership.copy()

21 for i in range(k):

22 dm[:,i] = np.sum(np.square(X-clusterCenters[i

,:]), axis =1)
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23 clusterMembership = np.argmin(dm, axis =1)

24 nChanges = np.count_nonzero(clusterMembership -

clusterMembership_)

25 numIter += 1

26 if nChanges == 0:

27 break;

28 objectiveValue = np.sum(dm[list(range(n)),

clusterMembership ]).item()

29 return clusterMembership , clusterCenters ,

objectiveValue , numIter

In the above code, we assume that the input data X is a two-dimensional array
with numerical elements. At the beginning, we initialize k cluster centers by
selecting k distinct records from the input dataset. Then we initialize the
cluster memberships by assigning records to their nearest centers.

After the cluster centers and the cluster memberships are initialized, we
use a while loop to repeatedly update the cluster centers and the cluster
memberships until the cluster memberships no longer change. However, we
impose a maximum number of iterations.

The k-means algorithm may produce empty clusters, especially when the
number of clusters is relatively large. In our implementation, we prevent empty
clusters by updating the centers of empty clusters to randomly selected data
points. This mechanism is implemented in Lines 14–18 of the above code.

In the above implementation, we try to avoid loops as much as possible.
Since the desired number of clusters is usually much smaller than the number
of records, we loop through the number of clusters rather than the number of
records.

Since the k-means algorithm can produce different results based on differ-
ent initial cluster centers, we can run the algorithm multiple times to select
the best result. We can implement the multiple run of the k-means algorithm
as follows:

1 def kmeans2(X, k=3, numrun =10, maxit =100):

2 bestCM , bestCC , bestOV , bestIters = kmeans(X, k, maxit)

3 print([bestOV , bestIters ])

4 for i in range(numrun -1):

5 cm, cc, ov , iters = kmeans(X, k, maxit)

6 print([ov , iters])

7 if ov < bestOV:

8 bestCM , bestCC , bestOV , bestIters = cm , cc , ov ,

iters

9 return bestCM , bestCC , bestOV , bestIters

In the above code, we select the run with the minimum objective function
value as the best run.
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8.3 Examples

In this section, we show how to use the k-means algorithm implemented in
the previous section. Before running the code given in the previous section,
we load the necessary libraries by executing the following code:

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 from sklearn.datasets import make_blobs

5 from ucimlrepo import fetch_ucirepo

First, we apply the k-means algorithm to a synthetic dataset. The following
piece of code illustrates how to generate a synthetic dataset and apply the
k-means algorithm to the dataset:

1 centers = [[3, 3], [-3, -3], [3, -3]]

2 X, y = make_blobs(n_samples =300, centers=centers ,

cluster_std =1, random_state =1)

3

4 yhat , cc, ov, iters = kmeans(X, 3)

5 cm1 = createCM(y, yhat)

6 print([ov , iters])

7 print(cm1)

8

9 bcm , bcc , bov , biters = kmeans2(X)

10 cm2 = createCM(y, bcm)

11 print([bov , biters ])

12 print(cm2)

Executing the above block of code gives the following output:

1 [580.3494342617068 , 10]

2 0 1 2

3 0 0 100 0

4 1 99 0 1

5 2 0 1 99

6 [580.3494342617068 , 2]

7 [580.3494342617068 , 4]

8 [580.3494342617068 , 4]

9 [580.3494342617068 , 4]

10 [580.3494342617068 , 9]

11 [580.3494342617068 , 9]

12 [580.3494342617068 , 5]

13 [580.3494342617068 , 5]

14 [580.3494342617068 , 4]

15 [580.3494342617068 , 7]

16 [580.3494342617068 , 2]
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17 0 1 2

18 0 100 0 0

19 1 0 99 1

20 2 1 0 99

From the output, we see that the k-means algorithm produced very good
results on the synthetic dataset. Only two records were misclassified by the
k-means algorithm. In all the runs, the k-means algorithm produced the same
objective function value. However, the number of iterations were different for
different runs.

Since the synthetic dataset is a two-dimensional dataset, we can visualize
the clustering results by plotting the data points with different markers. We
can produce such a plot as follows:

1 fig , ax = plt.subplots(1, 1, figsize =(6, 6))

2 markers = ["x", "o", "+"]

3 for i in range (3):

4 members = bcm == i

5 center = bcc[i,:]

6 ax.plot(X[members , 0], X[members , 1], markers[i], color

="black")

7 ax.plot(center [0], center [1], "^", markerfacecolor="

white",

8 markeredgecolor="black", markersize =15)

9 fig.savefig("kmeans1.pdf", bbox_inches='tight')

After executing the above block of code, we see the plot shown in Figure
8.1. The cluster centers are denoted by triangles. Cluster memberships are
indicated by different markers.

In the rest of this section, we apply the k-means algorithm to the Iris
dataset. Let us apply the k-means algorithm to the Iris dataset 20 times:

1 iris = fetch_ucirepo(id=53)

2 X = iris.data.features

3 y = iris.data.targets

4

5 bcm , bcc , bov , biters = kmeans2(X, numrun =20)

6 cm1 = createCM(y, bcm)

7 print(cm1)

8 print([bov , biters ])

Executing the above block of code produced the following output:

1 [78.94084142614602 , 4]

2 [78.94084142614602 , 3]

3 [78.94506582597731 , 9]

4 [78.94084142614602 , 6]

5 [78.94506582597731 , 5]

6 [78.94506582597731 , 10]
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FIGURE 8.1: Clustering results produced by applying the k-means algorithm
to the synthetic data.

7 [78.94506582597731 , 10]

8 [78.94506582597731 , 12]

9 [78.94084142614602 , 4]

10 [78.94084142614602 , 7]

11 [78.94084142614602 , 6]

12 [143.45373548406212 , 6]

13 [142.85929166666665 , 4]

14 [78.94084142614602 , 7]

15 [78.94084142614602 , 5]

16 [78.94506582597731 , 6]

17 [78.94506582597731 , 16]

18 [78.94084142614602 , 3]

19 [78.94506582597731 , 5]

20 [78.94084142614602 , 7]

21 0 1 2

22 Iris -setosa 0 50 0
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23 Iris -versicolor 48 0 2

24 Iris -virginica 14 0 36

25 [78.94084142614602 , 4]

From the output, we see that most of the runs produced relatively small ob-
jective function values. Two runs produced relatively large objective function
values. For the best run, 16 records are misclassified. Records with the target
Iris-setosa were grouped 100% correctly by the k-means algorithm.

To divide the Iris dataset into six clusters, we can run the following code:

1 bcm , bcc , bov , biters = kmeans2(X, k=6, numrun =20)

2 cm1 = createCM(y, bcm)

3 print(cm1)

4 print([bov , biters ])

After executing the above code, we see the following output:

1 [68.65823307743929 , 15]

2 [42.312521556681986 , 8]

3 [39.251830892636775 , 7]

4 [68.245945237742 , 11]

5 [47.62757749753634 , 11]

6 [48.43080641716744 , 8]

7 [39.185257692307694 , 7]

8 [45.42942304384424 , 8]

9 [48.091082025432456 , 12]

10 [47.75236080174198 , 5]

11 [47.66450931571816 , 11]

12 [47.75415897978063 , 16]

13 [45.47813516505636 , 6]

14 [39.251830892636775 , 6]

15 [42.312521556681986 , 8]

16 [68.44723527042174 , 11]

17 [38.957011157119865 , 7]

18 [45.45010085470085 , 8]

19 [42.36690446650125 , 7]

20 [41.801410101010106 , 6]

21 0 1 2 3 4 5

22 Iris -setosa 0 0 27 23 0 0

23 Iris -versicolor 0 27 0 0 0 23

24 Iris -virginica 12 1 0 0 24 13

25 [38.957011157119865 , 7]

Among the 20 runs of the k-means algorithm, the best run produced an ob-
jective function value of 38.957. Records with the target Iris-setosa were
divided into two clusters. Records with the target Iris-versicolor were
also divided into two clusters. Records with the target Iris-virginica were
divided into three major clusters.
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The k-means algorithm is implemented in the scikit-learn library. To apply
the k-means algorithm from this library to the Iris dataset, we can run the
following code:

1 from sklearn.cluster import KMeans

2 res = KMeans(n_clusters =6, random_state =0, n_init="auto").

fit(X)

3 cm2 = createCM(y, res.labels_)

4 print(cm2)

5 print([res.inertia_ , res.n_iter_ ])

After executing the above block of code, we see the following output:

1 0 1 2 3 4 5

2 Iris -setosa 0 27 0 0 0 23

3 Iris -versicolor 27 0 0 2 21 0

4 Iris -virginica 1 0 22 27 0 0

5 [42.31252155668197 , 7]

The results are a little different from those produced by the k-means algo-
rithm implemented in this chapter. To see the difference, we can calculate the
confusion matrix between the results produced by the two versions of k-means:

1 print(createCM(bcm , res.labels_))

The resulting confusion matrix is

1 0 1 2 3 4 5

2 0 0 0 12 0 0 0

3 1 28 0 0 0 0 0

4 2 0 27 0 0 0 0

5 3 0 0 0 0 0 23

6 4 0 0 10 14 0 0

7 5 0 0 0 15 21 0

From the confusion matrix, we see that four clusters are the same. Two clusters
are different.

8.4 Summary

In this chapter, we introduced the standard k-means algorithm and its im-
plementation. We also applied the k-means algorithm to a synthetic dataset
and the Iris dataset with different parameters. Our experiments show that the
k-means algorithm is sensitive to initial cluster centers and may terminates
at local optimum solutions.
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As the most popular and the simplest partitional clustering algorithm,
the k-means algorithm has a long history. In fact, the algorithm was inde-
pendently discovered by several people from different scientific fields [145].
Since then many variations of the k-means algorithm have been proposed. For
more information about the k-means algorithm and its variations, readers are
referred to [90] and references therein.
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referred to [90] and references therein.

9

The c-means Algorithm

The c-means algorithm is also referred to as the fuzzy c-means (FCM) algo-
rithm, which was developed by [67] and improved by [22]. Since the c-means
algorithm is a fuzzy clustering algorithm, it allows one record to belong to two
or more clusters with some weights. The c-means algorithm is very similar to
the k-means algorithm in other aspects. In this chapter, we shall implement
the c-means algorithm and illustrate it with some examples.

9.1 Description of the Algorithm

Let X = {x0,x1, · · · ,xn−1} be a dataset containing n records, each of which
is described by d numeric attributes. Let U be a n× k fuzzy partition matrix,
which satisfies the following conditions:

0 ≤ uij ≤ 1, 0 ≤ j ≤ k − 1, 1 ≤ i ≤ n− 1, (9.1a)

k∑
j=1

uij = 1, 0 ≤ i ≤ n− 1, (9.1b)

n∑
i=1

uij > 0, 0 ≤ j ≤ k − 1, (9.1c)

where uij is the (i, j) entry of the matrix U .
Given the dataset X, the c-means algorithm finds a fuzzy partition of X

by minimizing the following objective function:

Jα =

k−1∑
j=0

n−1∑
i=0

uα
ijDeuc(xi,µj)

2, (9.2)

where α ∈ (1,∞) is a weighting exponent, the µj is the center of cluster j,
and Deuc(·, ·) is the Euclidean distance.

To minimize the objective function, the c-means algorithm employs an
iterative process. That is, the c-means algorithm repeats updating the fuzzy
cluster memberships given the cluster centers and updating the cluster centers
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given the fuzzy cluster memberships until some stop condition is met. At the
beginning, the c-means algorithm selected k distinct records from the dataset

as initial cluster centers. Suppose µ
(0)
0 ,µ

(0)
1 , · · · ,µ(0)

k−1 are the k initial cluster
centers. Then the c-means algorithm updates the fuzzy cluster memberships
according to the following formula:

u
(0)
ij =



k−1
l=0


Deuc(xi,µ

(0)
j )

Deuc(xi,µ
(0)
l )

 2
α−1



−1

=
Deuc(xi,µ

(0)
j )

−2
α−1

k−1
l=0 Deuc(xi,µ

(0)
l )

−2
α−1

(9.3)

for j = 0, 1, · · · , k − 1 and i = 0, 1, · · · , n− 1.
Once the fuzzy cluster memberships are updated, the c-means continues

to update the cluster centers according to the following formula:

µ
(1)
j =

n−1
i=0


u
(0)
ij

α

xi

n−1
i=0


u
(0)
ij

α
(9.4)

for j = 0, 1, · · · , k − 1.
The c-means algorithm repeats the above steps until the change of the

objective function values between two iterations is within the tolerance or the
maximum number of iterations is reached.

Once a fuzzy partition U is obtained, the c-means algorithm produces a
hard partition based on the fuzzy partition. Precisely, let γ0, γ1, · · · , γn−1 be
the hard partition. That is, γi is the index of the cluster to which record xi

belongs. Then the hard partition can be determined as follows:

γi = argmax
0≤j≤k−1

uij , i = 0, 1, · · · , n− 1. (9.5)

9.2 Implementation

It is straightforward to implement the c-means algorithm. In Python, we can
implement the c-means algorithm as follows:

1 def cmeans(X, k=3, alpha=2, tol=1e-6, maxit =100):

2 if alpha <= 1:

3 raise ValueError("Invalid alpha")

4 X = np.ascontiguousarray(X)

5 n, d = X.shape

6 epsilon = 1e-8
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7 ind = np.random.choice(n, k, replace=False)

8 clusterCenters = X[ind ,:]

9 dm = np.zeros ((n,k))

10 for i in range(k):

11 dm[:,i] = np.sum(np.square(X-clusterCenters[i,:]),

axis =1)

12 dma = np.pow(dm + epsilon , -1/(alpha -1))

13 clusterMembership = dma / np.sum(dma , axis=1, keepdims=

True)

14 objectiveValue = np.sum(np.multiply(np.pow(

clusterMembership , alpha), dm))

15 numIter = 1

16 while numIter < maxit:

17 # update cluster centers

18 ua = np.pow(clusterMembership , alpha)

19 for i in range(k):

20 clusterCenters[i,:] = np.sum(X*ua[:,i]. reshape

((n,1)), axis =0)/np.sum(ua[:,i])

21 # update cluster membership

22 objectiveValue_ = objectiveValue

23 for i in range(k):

24 dm[:,i] = np.sum(np.square(X-clusterCenters[i

,:]), axis =1)

25 dma = np.pow(dm + epsilon , -1/(alpha -1))

26 clusterMembership = dma / np.sum(dma , axis=1,

keepdims=True)

27 objectiveValue = np.sum(np.multiply(np.pow(

clusterMembership , alpha), dm))

28 numIter += 1

29 if np.abs(objectiveValue - objectiveValue_) < tol:

30 break;

31 return clusterMembership , clusterCenters ,

objectiveValue.item(), numIter

In the above code, we try to use vectorized operations as much as possible.
Initialization of the cluster centers is the same as in the k-means algorithm.
We select k distinct records as the initial cluster centers. Cluster memberships
are calculated according to Equation (9.3).

During the iterative process, we update the cluster centers and the cluster
memberships alternatively. To prevent the division by zero error, we add a
small positive number of the distances when updating the cluster member-
ships.

In our implementation, the distance matrix dm stores the squared Eu-
clidean distances between all records and all cluster centers. When updating

the cluster memberships, we use the power
−1

α− 1
rather than the power

−2

α− 1
.

Such treatment can save some numerical operations.
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Since the c-means algorithm also uses random initial cluster centers, we
can run the c-means algorithm multiple times to get the best run. We can
implement the multiple run as follows:

1 def cmeans2(X, k=3, alpha=2, numrun =10, maxit =100):

2 bestFM , bestCC , bestOV , bestIters = cmeans(X, k=k,

alpha=alpha , maxit=maxit)

3 print([bestOV , bestIters ])

4 for i in range(numrun -1):

5 fm, cc, ov , iters = cmeans(X, k=k, alpha=alpha ,

maxit=maxit)

6 print([ov , iters])

7 if ov < bestOV:

8 bestFM , bestCC , bestOV , bestIters = fm , cc , ov ,

iters

9 return bestFM , bestCC , bestOV , bestIters

Given the same parameters, we select the run with the lowest objective func-
tion value as the best run.

9.3 Examples

In this section, we apply the c-means algorithm implemented in the previous
section to cluster a synthetic dataset and the Iris dataset.

The following piece of code shows how to apply the c-means algorithm to
a synthetic dataset multiple times:

1 centers = [[3, 3], [-3, -3], [3, -3]]

2 X, y = make_blobs(n_samples =300, centers=centers ,

cluster_std =1, random_state =1)

3

4 fm , cc , ov , iters = cmeans2(X, k=3)

5 yhat = np.argmax(fm, axis =1)

6 cm1 = createCM(y, yhat)

7 print([ov , iters])

8 print(cm1)

9 print(np.array_str(fm[::15 ,:] , precision=4, suppress_small=

True))

After executing the above block of code, we see the following output:

1 [490.91547109802275 , 12]

2 [490.9154711285173 , 11]

3 [490.91547108445354 , 12]

4 [490.915471116234 , 8]

5 [490.91547109508303 , 8]
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6 [490.91547108554346 , 11]

7 [490.9154710835343 , 9]

8 [490.9154710813908 , 13]

9 [490.9154711012434 , 8]

10 [490.915471083445 , 9]

11 [490.9154710813908 , 13]

12 0 1 2

13 0 100 0 0

14 1 0 1 99

15 2 1 99 0

16 [[0.0041 0.0072 0.9886]

17 [0.735 0.211 0.054 ]

18 [0.0155 0.0395 0.945 ]

19 [0.0059 0.9885 0.0056]

20 [0.0222 0.0418 0.936 ]

21 [0.0513 0.9016 0.0471]

22 [0.955 0.0301 0.015 ]

23 [0.9003 0.0746 0.025 ]

24 [0.0197 0.96 0.0203]

25 [0.0333 0.916 0.0507]]

From the first part of the output, we see that the c-means algorithm achieved
almost the same objective function values in all ten runs. This indicates that
the c-means algorithm is less sensitive to initial cluster centers than the k-
means algorithm. From the confusion matrix, we see that only two records
were misclassified. The last part of the output shows the fuzzy memberships
of selected records.

In the above example, we used α = 2 in the algorithm. To see the impact
of α, let us run the algorithm with α = 8 by executing the following block of
code:

1 fm , cc , ov , iters = cmeans2(X, k=3, alpha =8)

2 yhat = np.argmax(fm, axis =1)

3 cm1 = createCM(y, yhat)

4 print([ov , iters])

5 print(cm1)

6 print(np.array_str(fm[::30 ,:] , precision=4, suppress_small=

True))

The output is

1 [1.609246300468918 , 15]

2 [1.6092461622020275 , 18]

3 [1.6092461891446623 , 21]

4 [1.6092462157840335 , 15]

5 [1.6092463440433091 , 17]

6 [1.6092464432186513 , 19]

7 [1.6092462255305717 , 14]
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8 [1.609246420416092 , 24]

9 [1.6092461775655393 , 18]

10 [1.6092463656460998 , 20]

11 [1.6092461622020275 , 18]

12 0 1 2

13 0 0 100 0

14 1 1 0 99

15 2 99 1 0

16 [[0.2635 0.2405 0.496 ]

17 [0.3314 0.3987 0.2699]

18 [0.2877 0.2489 0.4634]

19 [0.6351 0.1832 0.1817]

20 [0.2899 0.2612 0.4489]

21 [0.4554 0.2742 0.2704]

22 [0.2819 0.4658 0.2523]

23 [0.3048 0.4352 0.26 ]

24 [0.4418 0.2785 0.2797]

25 [0.4516 0.2659 0.2825]]

We see similar results except that the fuzzy memberships are more evenly
distributed when α is larger.

To apply the c-means algorithm to the Iris dataset with three clusters, we
can run the following code:

1 iris = fetch_ucirepo(id=53)

2 X = iris.data.features

3 y = iris.data.targets

4

5 fm , cc , ov , iters = cmeans2(X, k=3)

6 yhat = np.argmax(fm, axis =1)

7 cm1 = createCM(y, yhat)

8 print([ov , iters])

9 print(cm1)

10 print(np.array_str(fm[::30 ,:] , precision=4, suppress_small=

True))

Default values of other parameters are used. Executing the above block of
code gives the following output:

1 [60.57595596119823 , 20]

2 [60.575955958487526 , 15]

3 [60.57595583673644 , 25]

4 [60.57595595099188 , 28]

5 [60.57595582822921 , 16]

6 [60.57595583847882 , 21]

7 [60.57595583464465 , 18]

8 [60.57595590575501 , 20]

9 [60.57595592703868 , 17]
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10 [60.57595613413543 , 43]

11 [60.57595582822921 , 16]

12 0 1 2

13 Iris -setosa 0 0 50

14 Iris -versicolor 3 47 0

15 Iris -virginica 37 13 0

16 [[0.0012 0.0025 0.9963]

17 [0.0062 0.0141 0.9798]

18 [0.1449 0.6356 0.2195]

19 [0.0493 0.931 0.0197]

20 [0.9705 0.0257 0.0038]]

We see similar patterns as for the synthetic data. The c-means algorithm is
less sensitive to initial cluster centers that the k-means algorithm. From the
confusion matrix, we see that 16 records were misclassified.

We can plot the fuzzy memberships by using stacked bar charts. The fol-
lowing block of code illustrates how to create a stacked bar chart from a fuzzy
membership matrix:

1 x = [10*i for i in range(fm.shape [0]//10)]

2 df = pd.DataFrame(fm[x,:],

3 index=x,

4 columns =["C1", "C2", "C3"])

5 ax = df.plot(

6 kind = 'barh',
7 stacked = True ,

8 colormap='Greys ',
9 title = 'Fuzzy membership ',

10 mark_right = True)

11 fig = ax.get_figure ()

12 fig.savefig('irisfm2.pdf')

In the above code, we first create a Pandas data frame from a subset of the
fuzzy membership matrix fm and then use the data frame’s plot function to
create the stacked bar chart. We only plot a subset of the fuzzy membership
matrix to save space.

Figure 9.1 shows the stacked bar charts of fuzzy memberships of selected
records. Figure 9.1a shows the fuzzy memberships when α = 2. Figure 9.1b
shows the fuzzy memberships when α = 8. Comparing the two stacked bar
charts, we see that the higher the value of α, the more uniform of the fuzzy
memberships.
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FIGURE 9.1: Stacked bar charts of fuzzy memberships of selected records.
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9.4 Summary

In this chapter, we implemented the c-means algorithm and illustrated the
algorithm with several examples. The c-means algorithm implemented in this
chapter is very similar to the fuzzy k-means algorithm [21, 100]. The c-means
algorithm is one of the many fuzzy cluster algorithms. For more information
about fuzzy clustering, readers are referred to [130], [184], and [243].
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The k-prototypes Algorithm

The k-prototypes algorithm [136] is a clustering algorithm designed to cluster
mixed-type datasets. The k-prototypes algorithm was developed based on the
idea of the k-means algorithm and the k-modes algorithm [41, 136]. In this
chapter, we shall implement the k-prototypes algorithm.

10.1 Description of the Algorithm

Let X = {x0,x1, · · · ,xn−1} be a mixed-type dataset containing n records,
each of which is described by d attributes. Suppose that p attributes are nu-
merical and the rest d−p attributes are categorical. Without loss of generality,
we assume that the first p attributes are numeric and the last d− p attributes
are categorical. Then the distance between two records x and y in X can be
defined as

Dmix(x,y, β) =

p−1∑
h=0

(xh − yh)
2 + β

d−1∑
h=p

δ(xh, yh), (10.1)

where xh and yh are the hth component of x and y, respectively, β is a balance
weight used to avoid favoring either type of attribute, and δ(·, ·) is the simple
matching distance defined as

δ(xh, yh) =

{
0, if xh = yh,
1, if xh ̸= yh.

The objective function that the k-prototypes algorithm tries to minimize
is defined as

Pβ =

k−1∑
j=0

∑
x∈Cj

Dmix(x,µj , β), (10.2)

where Dmix(·, ·, β) is defined in Equation (10.1), k is the number of clusters,
Cj is the jth cluster, and µj is the center or prototype of cluster Cj .

To minimize the objective function defined in Equation (10.2), the algo-
rithm proceeds iteratively. That is, the k-prototypes algorithm repeats updat-
ing the cluster memberships given the cluster centers and updating the cluster
centers given the cluster memberships until some stop condition is met.
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At the beginning, the k-prototypes algorithm initializes the k cluster
centers by selecting k distinct records from the dataset randomly. Suppose

µ
(0)
0 ,µ

(0)
1 , · · · , µ(0)

k−1 are the k initial cluster centers. The k-prototypes al-
gorithm updates the cluster memberships γ0, γ1, · · · , γn−1 according to the
following formula:

γ
(0)
i = argmin

0≤j≤k−1
Dmix(xi,µ

(0)
j , β), (10.3)

where Dmix(·, ·, β) is defined in Equation (10.1).
Once the cluster memberships are updated, the algorithm continues to

update the cluster centers according to the following formula:

µ
(1)
jh =

1

|Cj |
∑
x∈Cj

xh, h = 0, 1, · · · , p− 1, (10.4a)

µ
(1)
jh = modeh(Cj), h = p, p+ 1, · · · , d− 1, (10.4b)

where Cj =
{
xi ∈ X : γ

(0)
i = j

}
for j = 0, 1, · · · , k − 1, and modeh(Cj) is

the most frequent categorical value of the hth attribute in cluster Cj . Let
Ah0, Ah1, · · · , Ah,mh−1 be the distinct values the hth attribute can take, where
mh is the number of distinct values the hth attribute can take. Let fht(Cj)
be the number of records in cluster Cj , whose hth attribute takes value Aht

for t = 0, 1, · · · ,mh − 1. That is,

fht(Cj) = |{x ∈ Cj : xh = Aht}|, , t = 0, 1, · · · ,mh − 1.

Then

modeh(Cj) = max
0≤t≤mh−1

fht(Cj), h = p, p+ 1, · · · , d− 1.

The k-prototypes algorithm repeats the above steps until the cluster mem-
berships do not change or the maximum number of iterations is reached.

10.2 Implementation

In this section, we implement the k-prototypes algorithm described in the
previous section. Since the k-prototypes algorithm is designed to clusterize
mixed-type data, we need to think about a way to input the mixed-type data
to the algorithm. In [94], a single dataset is inputted to the C++ algorithm
and a schema is used to tell which columns are numerical and which columns
are categorical. Since Python is a scripting language, following the C++ ap-
proach can affect the performance. In the Python program, we will input
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the numerical part and the categorical part of the mixed-type dataset to the
algorithm separately.

In Python, we implement the k-prototypes algorithm as follows:

1 def kproto(Xn , Xc , k=3, beta=None , tol=1e-8, maxit =100):

2 Xn = np.ascontiguousarray(Xn)

3 Xc = np.ascontiguousarray(Xc)

4 n, d1 = Xn.shape

5 nc , d2 = Xc.shape

6 if n != nc:

7 raise ValueError("dimension mismatch")

8 if beta is None:

9 beta = estBeta(Xn, Xc)

10 ind = np.random.choice(n, k, replace=False)

11 clusterCentersn = Xn[ind ,:]

12 clusterCentersc = Xc[ind ,:]

13 dm = np.zeros ((n,k))

14 for i in range(k):

15 dm[:,i] = np.sum(np.square(Xn-clusterCentersn[i,:])

, axis =1) + beta * np.count_nonzero(Xc-

clusterCentersc[i,:], axis =1)

16 clusterMembership = np.argmin(dm, axis =1)

17 objectiveValue = np.sum(dm[list(range(n)),

clusterMembership ]).item()

18 numIter = 1

19 while numIter < maxit:

20 # update cluster centers

21 for i in range(k):

22 bInd = clusterMembership ==i

23 if np.any(bInd):

24 clusterCentersn[i,:] = np.mean(Xn[bInd],

axis =0)

25 clusterCentersc[i,:] = stats.mode(Xc[bInd])

[0]

26 else:

27 clusterCentersn[i,:] = Xn[np.random.randint

(0, n) ,:]

28 clusterCentersc[i,:] = Xc[np.random.randint

(0, n) ,:]

29 # update cluster membership

30 for i in range(k):

31 dm[:,i] = np.sum(np.square(Xn-clusterCentersn[i

,:]), axis =1) + beta * np.count_nonzero(Xc-

clusterCentersc[i,:], axis =1)

32 clusterMembership = np.argmin(dm, axis =1)

33 objectiveValue_ = objectiveValue

34 objectiveValue = np.sum(dm[list(range(n)),

clusterMembership ]).item()

35 numIter += 1
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36 if np.abs(objectiveValue - objectiveValue_) < tol:

37 break;

38 return clusterMembership , clusterCentersn ,

clusterCentersc , objectiveValue , numIter

In the above code, the arguments Xn and Xc correspond to the numerical part
and the categorical part of the mixed-type dataset. In Lines 6–7, we check the
number of rows of Xn and Xc to ensure that they have the same number of
records.

In Lines 10–12, we initialize the cluster centers by randomly selecting k

distinct records from the input data. In Lines 13–15, we calculate the distances
between all records and all cluster centers. Here, vectorized operations are used
to speed up the calculation.

During the iterative process, we update the cluster centers and the cluster
memberships alternatively. When an empty cluster appears, the cluster center
is updated to a randomly selected record. When a cluster is not empty, its
center is updated according to the formulas given in the previous section. That
is, the numerical part of the center is updated by the mean of all records in
the cluster and the categorical part is updated by the mode of all records in
the cluster. The mode function from the SciPy library is used to get the mode.

When the parameter β is not specified in the input, the estBeta function
is called to estimate the parameter. The estBeta function is given below:

1 def estBeta(Xn , Xc):

2 numVar = np.mean(np.var(Xn, axis =0))

3 vv = np.zeros(Xc.shape [1])

4 for j in range(Xc.shape [1]):

5 nv, nc = np.unique(Xi[:,j], return_counts=True)

6 vp = nc/np.sum(nc)

7 vv[j] = 1 - np.sum(np.square(vp))

8 return numVar / np.mean(vv)

The method used to estimate the parameter β is a method used in the R
package clustMixType [238]. In this method, the parameter β is estimated
to be the ratio of the average numerical variance to the average categorical
variance.

Since the k-prototypes algorithm used random initial cluster centers, we
also need to run the algorithm multiple time to minimize the affect of initial
cluster centers. The following function implements the multiple run of the
algorithm:

1 def kproto2(Xn , Xc , k=3, beta=None , numrun =10, maxit =100):

2 bestCM , bestCCn , bestCCc , bestOV , bestIters = kproto(Xn

, Xc, k=k, beta=beta , maxit=maxit)

3 vOV = np.zeros(numrun)

4 vOV[0] = bestOV

5 for i in range(numrun -1):
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6 cp, ccn , ccc , ov , iters = kproto(Xn , Xc , k=k, beta=

beta , maxit=maxit)

7 vOV[i+1] =ov

8 if ov < bestOV:

9 bestCM , bestCCn , bestCCc , bestOV , bestIters =

cp , ccn , ccc , ov , iters

10 return bestCM , bestCCn , bestCCc , bestOV , bestIters , vOV

The best run is determined to be the run with the minimum objective function
value.

10.3 Examples

In this section, we apply the k-prototypes algorithm to clusterize a mixed-type
dataset from the UCI machine learning repository. The mixed-type dataset
we select is the heart disease dataset [11]. This dataset is also used in [94] to
illustrate the k-prototypes algorithm.

First, let us load the necessary Python libraries by running the following
code:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.impute import SimpleImputer

4 from scipy import stats

5 from ucimlrepo import fetch_ucirepo

6 from dcutil import createCM

To load the heart disease data, we run the following block of code:

1 heart_disease = fetch_ucirepo(id=45)

2

3 X = heart_disease.data.features

4 y = heart_disease.data.targets.copy()

5 y[y>0] = 1

The heart disease dataset has a id of 45 in the UCI machine learning repository.
The targets of the dataset range from 0 to 4, where 0 indicates no presence
of heart disease. In our experiment, we treat records with positive targets as
one cluster.

Before we apply the k-prototypes algorithm to the heart disease dataset,
we need to preprocess the data as the heart disease dataset contains missing
values and its numerical variables have quite different ranges.

To show that the dataset contains missing values, we run the following
code:
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code:
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1 print(X.isnull ().sum())

The output of running the above code is

1 age 0

2 sex 0

3 cp 0

4 trestbps 0

5 chol 0

6 fbs 0

7 restecg 0

8 thalach 0

9 exang 0

10 oldpeak 0

11 slope 0

12 ca 4

13 thal 2

14 dtype: int64

From the output, we see that the variable ca contains four missing values and
the variable thal contains two missing values.

Since there are only a few missing values, we can impute the missing
values. Since both variables take integer values, we use the most frequent
values of the variables to replace the missing values. To do that, we can use
the SimpleImputer from the scikit-learn library. The following block of code
shows how this is done:

1 imp = SimpleImputer(missing_values=np.nan , strategy='
most_frequent ')

2 imp.fit(X)

3 Xi = imp.transform(X)

Now we need to split the heart disease dataset into two parts: the nu-
merical part and the categorical part. The information about which variables
are numerical and which variables are categorical can be obtained from the
UCI machine learning repository. The following code shows how to split the
dataset:

1 varNames = list(X.columns)

2 numNames = ['age', 'trestbps ', 'chol', 'thalach ', 'oldpeak '
, 'ca']

3 numInd = [varNames.index(s) for s in numNames]

4 catInd = [varNames.index(s) for s in set(varNames).

difference(numNames)]

5 catInd.sort()

6

7 Xn = Xi[:, numInd]

8 Xc = Xi[:, catInd ]. astype(int)
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In the above code, we first obtain the column indices of the numerical vari-
ables and the categorical variables. Then we select the numerical part and the
categorical part by the corresponding indices.

To prevent one numerical variable to dominate the distance, we normalize
all numerical variables by the min-max normalization method. The following
code shows how to normalize the numerical data:

1 vMin = np.min(Xn, axis =0)

2 vMax = np.max(Xn, axis =0)

3 Xn = (Xn-vMin)/(vMax -vMin)

To get the ranges of the preprocessed data and the estimated value of the
parameter β, we can run the following code:

1 print(np.min(Xn , axis =0))

2 print(np.max(Xn , axis =0))

3 print(np.min(Xc , axis =0))

4 print(np.max(Xc , axis =0))

5 print(estBeta(Xn , Xc))

Executing the above block of code in Spyder gives the following output:

1 [0. 0. 0. 0. 0. 0.]

2 [1. 1. 1. 1. 1. 1.]

3 [0 1 0 0 0 1 3]

4 [1 4 1 2 1 3 7]

5 0.05851507919628685

From the output, we see that the numerical variables were scaled to intervals
[0, 1]. The categorical variables were coded in integers. The parameter β was
estimated to be 0.0585, which can be a good start value for the parameter.

Now we are ready to apply the k-prototypes algorithm to the heart disease
dataset. To do that, we run the following code:

1 bcm , bccn , bccc , bov , biters , vOV = kproto2(Xn, Xc, k=2,

numrun =100)

2 cm1 = createCM(y, bcm)

3 print(cm1)

4 print([bov , biters ])

We run the k-prototypes algorithm 100 times on the heart disease dataset.
After executing the above block of code, we see the following output:

1 0 1

2 0 14 150

3 1 96 43

4 [91.12791972438707 , 8]
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FIGURE 10.1: Objective function values of 100 runs of the k-prototypes al-
gorithm on the heart disease dataset.

From the output, we see that 57 records were misclassified in the best run. The
best run produced an objective function value of 91.13. Figure 10.1 shows the
objective function values of all the 100 runs. Due to the use of the mismatch
distance in the objective function, the objective function values of the 100
runs form clear groups.

To give more weight to the categorical variables in the objective function,
we can set the parameter β to be 1, which is about 20 times the estimated
value. To run the k-prototypes with β = 1, we use the following code:

1 bcm , bccn , bccc , bov , biters , vOV = kproto2(Xn, Xc, k=2,

beta=1, numrun =100)

2 cm1 = createCM(y, bcm)

3 print(cm1)

4 print([bov , biters ])

Executing the above block of code, we see the following output:

1 0 27 137

2 1 107 32

3 [651.6327692076546 , 6]

The accuracy of the clustering result is about the same as the case when the
estimated value of β was used.

If we want to ignore the categorical variables in the objective function, we
can set the parameter β to be zero. To test this, we run the following block



156 The k-prototypes Algorithm

of code:

1 bcm , bccn , bccc , bov , biters , vOV = kproto2(Xn, Xc, k=2,

beta=0, numrun =100)

2 cm1 = createCM(y, bcm)

3 print(cm1)

4 print([bov , biters ])

After executing the above block of code, we see the following output:

1 0 145 19

2 1 61 78

3 [46.80906544956523 , 7]

From the output, we see that the accuracy of the clustering result decreased
as more records were misclassified.

10.4 Summary

In this chapter, we implemented the k-prototypes algorithm and illustrated it
with a real dataset. The k-prototypes algorithm integrates the k-means algo-
rithm and the k-modes algorithm. The distance measure for the k-prototypes
algorithm includes two components: the distance for numerical attributes and
the distance for categorical attributes. The two components are balanced us-
ing a weight. In our implementation, we used the squared Euclidean distance
for numerical attributes and the simple matching distance for the categori-
cal attributes. In fact, the k-prototypes algorithm can use other mixed-type
distance measures. For example, the general Minkowski distance [138, 139].
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11

The Genetic k-modes
Algorithm

The k-modes algorithm is a center-based clustering algorithm designed to
cluster categorical datasets [136, 41]. In the k-modes algorithm, centers of
clusters are referred to as modes. One drawback of the k-modes algorithm is
that the algorithm can only guarantee a locally optimal solution. The genetic
k-modes algorithm[93] was developed to improve the k-modes algorithm by
integrating the k-modes algorithm with the genetic algorithm [128]. Although
the genetic k-modes algorithm can not guarantee a globally optimal solution,
the genetic k-modes algorithm has more chances to find a globally optimal
solution than the k-modes algorithm. In this chapter, we shall implement the
genetic k-modes algorithm and illustrate the algorithm with examples.

11.1 Description of the Algorithm

Before we introduce the genetic k-modes algorithm, let us first give a brief in-
troduction to the genetic algorithm, which was originally introduced by [128].
In genetic algorithms, solutions (i.e., parameters) of a problem are encoded in
chromosomes and a population is composed of many solutions. Each solution
is associated with a fitness value.

A genetic algorithm evolves over generations. During each generation,
three genetic operators, natural selection, crossover, and mutation, are applied
to the current population to produce a new population. The natural selection
operator selects a few chromosomes from the current population based on the
principle of survival of the fittest. Then the selected chromosomes are modi-
fied by the crossover operator and the mutation operator before putting into
the new population.

The genetic k-modes algorithm was developed based on the genetic k-
means algorithm [159]. The genetic k-modes algorithm has five elements:
coding, initialization, selection, mutation, and k-modes operator. In the ge-
netic k-modes algorithm, the crossover operator is replaced by the k-modes
operator.
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In the k-modes algorithm, a solution (i.e., a partition) is coded as a vector
of cluster memberships. Let X = {x0,x1, · · · ,xn−1} be a dataset consisting
of n records and C0, C1, · · · , Ck−1 be a partition of X. Then the vector of
cluster memberships corresponding to the partition is defined as

γi = j if xi ∈ Cj

for i = 0, 1, · · · , n − 1 and j = 0, 1, · · · , k − 1. A chromosome is said to be
legal if each one of the corresponding k clusters is nonempty.

The loss function for a solution represented by Γ = (γ0, γ1, · · · , γn−1) is
defined as

L(Γ) =
n−1∑
i=0

Dsim(xi,µγi
), (11.1)

where µj (0 ≤ j ≤ k−1) is the center of cluster Cj and Dsim(·, ·) is the simple
matching distance (see Section 5.5.2). The fitness value for the solution is
defined as

F (Γ) =

{
cLmax − L(Γ) if Γ is legal,
e(Γ)Fmin otherwise,

(11.2)

where L(Γ) is defined in Equation (11.1), c ∈ (0, 3) is a constant, Lmax is
the maximum loss of chromosomes in the current population, Fmin is the
smallest fitness value of the legal chromosomes in the current population if
legal chromosomes exist or 1 if otherwise, and e(Γ) is the legality ratio defined
as the ratio of the number of nonempty clusters over k.

The selection operator randomly selects a chromosome from the current
population according to the following distribution:

P (Γi) =
F (Γi)

N−1∑
r=0

F (Γi)

,

where N is the number of chromosomes in the current population and F (·) is
defined in Equation (11.2). Hence chromosomes with higher fitness values are
more likely to be selected. The selection operator is applied N times in order
to select N chromosomes for the new population.

The mutation operator replaces the ith component γi of a chromosome Γ =
(γ0, γ1, · · · , γn−1) with a cluster index randomly selected from {0, 1, · · · , k−1}
according to the following distribution:

P (j) =
cmdmax(xi)−Dsim(xi,µj)

k−1∑
l=0

[cmdmax(xi)−Dsim(xi,µl)]

, (11.3)

where cm > 1 is a constant and

dmax(xi) = max
0≤l≤k−1

Dsim(xi,µl), i = 0, 1, · · · , n− 1.
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dmax(xi) = max
0≤l≤k−1

Dsim(xi,µl), i = 0, 1, · · · , n− 1.
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In genetic algorithm, mutation occurs with some mutation probability Pm.
That is, for each component of each selected chromosome, the mutation oper-
ator is applied if a randomly generated standard uniform number is less than
Pm.

Once a selected chromosome is mutated, the k-modes operator is applied
to it. Let Γ be a chromosome. The k-modes operator changes Γ into another
chromosome Γ̂ based on the following two steps:

Updating cluster centers Given the cluster memberships Γ, the cluster
center µj of cluster Cj is updated to the modes of the cluster (see
Section 10.1). Let µ̂j (j = 0, 1, · · · , k − 1) be the updated cluster cen-
ters.

Updating cluster memberships Given the cluster centers µ̂j , the cluster
memberships are updated as follows. The ith component γi of Γ is
updated to

γ̂i = argmin
0≤j≤k−1

Dsim(xi, µ̂j), i = 0, 1, · · · , n− 1.

If a cluster is empty, the distance of a record between the cluster is
defined to be ∞. Hence illegal chromosomes remain illegal after the
application of the k-modes operator.

11.2 Implementation

In this section, we implement the genetic k-modes algorithm in Python. Unlike
the k-means and the k-prototypes algorithms, the genetic k-modes algorithm
involves operations that cannot be vectorized. The Python code of the genetic
k-modes algorithm can be very slow.

The main function of the genetic k-modes algorithm is implemented as
follows:

1 def gkmodes(X, k=3, pop=50, maxgen =100, c=1.5, cm=1.5,

mprob =0.2):

2 X = np.ascontiguousarray(X)

3 n, d = X.shape

4 population = np.random.choice(k, pop*n).reshape(pop , n)

5 vLoss = np.zeros((pop , 2))

6 vFit = np.zeros(pop)

7 for g in range(maxgen):

8 # calculate loss , legality ratio

9 for i in range(pop):

10 vLoss[i,:] = loss(X, population[i,:], k)

11 # calculate fitness
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12 bLegal = vLoss [:,1] >= 1

13 maxL = np.max(vLoss[bLegal ,0])

14 vFit[bLegal] = c*maxL - vLoss[bLegal ,0]

15 minF = np.min(vFit[bLegal ])

16 bNotlegal = np.logical_not(bLegal)

17 vFit[bNotlegal] = vLoss[bNotlegal , 1] * minF

18 # selection

19 vP = vFit / np.sum(vFit)

20 ind = np.random.choice(pop , size=pop , p=vP)

21 population = population[ind ,:]

22 # mutation

23 for i in range(pop):

24 population[i,:] = mutation(X, population[i,:],

k, cm, mprob)

25 # k-modes operator

26 for i in range(pop):

27 population[i,:] = kmode(X, population[i,:], k)

28 for i in range(pop):

29 vLoss[i,:] = loss(X, population[i,:], k)

30 return population , vLoss

In the above function, the population is structured as a two-dimensional
NumPy array. During the iterations, the fitness values of all chromosomes
are first calculated. The selection, the mutation, and the k-modes operators
are followed. After a specified number of iterations, the final population and
the corresponding loss function values are returned.

The main function depends on three other functions: loss, mutation, and
kmode. The loss function is used to calculate the loss function value and the
legality ratio of a chromosome. This function is implemented as follows:

1 def loss(X, gamma , k):

2 dLoss = 0

3 nNonempty = 0

4 for i in range(k):

5 bInd = gamma == i

6 if np.any(bInd):

7 center = stats.mode(X[bInd])[0]

8 dLoss += np.count_nonzero(X-center)

9 nNonempty += 1

10 return (dLoss , nNonempty/k)

The simple matching distance is calculated by counting the non zeros of the
difference between a record and its center.

The mutation function is used to perform the mutation operation on a
chromosome. This function is implemented as follows:

1 def mutation(X, gamma , k, cm , mprob):

2 n = X.shape [0]

3 dm = np.zeros ((n, k))
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4 for i in range(k):

5 bInd = gamma == i

6 if np.any(bInd):

7 center = stats.mode(X[bInd])[0]

8 else:

9 center = X[np.random.randint(0, n) ,:]

10 dm[:,i] = np.count_nonzero(X-center , axis =1)

11 dm = cm*np.max(dm, axis=1, keepdims=True) - dm

12 dm = dm / np.sum(dm, axis=1, keepdims=True)

13 ind = np.where( np.random.rand(n) < mprob )[0]

14 clusterMembership = gamma

15 for i in ind:

16 clusterMembership[i] = np.random.choice(k, size=1,

p=dm[i,:]. flatten ()).item()

17 return clusterMembership

The mutation operator cannot be vectorized as the distributions used to select
cluster indices are different for different records.

The k-modes operator is implemented as follows:

1 def kmode(X, gamma , k):

2 n = X.shape [0]

3 dm = np.zeros ((n, k))

4 for i in range(k):

5 bInd = gamma == i

6 if np.any(bInd):

7 center = stats.mode(X[bInd])[0]

8 else:

9 center = X[np.random.randint(0, n) ,:]

10 dm[:,i] = np.count_nonzero(X-center , axis =1)

11 return np.argmin(dm, axis =1)

In the above function, the input is a vector of cluster memberships. The k-
modes operator first determines the center (i.e., mode) of each cluster and
then assign each record to its nearest center.

11.3 Examples

In this section, we apply the genetic k-modes algorithm to a real dataset.
Since the algorithm is developed for categorical data, we use the small soybean
dataset [210] from the UCI machine learning repository.

Before we run the code given in the previous section, we need to load the
necessary libraries by running the following code:
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1 import time

2 import numpy as np

3 from scipy import stats

4 from ucimlrepo import fetch_ucirepo

5 from dcutil import createCM

To load the small soybean dataset, we run the following code:

1 soybean_small = fetch_ucirepo(id=91)

2

3 X = soybean_small.data.features

4 y = soybean_small.data.targets

To apply the genetic k-modes algorithm to the soybean dataset with four
clusters, we use the following code:

1 begt = time.time()

2 cms , losses = gkmodes(X, k=4)

3 endt = time.time()

4 print(endt -begt)

5

6 bestInd = np.argmin(losses [:,0])

7 print(bestInd)

8 yhat = cms[bestInd ,:]

9 cm1 = createCM(y, yhat)

10 print(cm1)

Default values of other parameters are used. We also measure the runtime of
the function. Executing the above block of code, we see the following output:

1 332.85249972343445

2 1

3 0 1 2 3

4 D1 0 0 10 0

5 D2 0 0 0 10

6 D3 10 0 0 0

7 D4 1 16 0 0

From the output, we see that it took the Python program about 332.85 seconds
to finish the algorithm. It only took the C++ program [94] about 10 seconds
to do the same calculation. We can see that Python can be very slow for loops.
From the confusion matrix, we see that only one record was misclassified by
the genetic k-modes algorithm.

To apply the algorithm with three clusters, we use the following code:

1 begt = time.time()

2 cms2 , losses2 = gkmodes(X, k=3)

3 endt = time.time()

4 print(endt -begt)

5
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6 bestInd2 = np.argmin(losses2 [: ,0])

7 print(bestInd2)

8 yhat2 = cms2[bestInd2 ,:]

9 cm1 = createCM(y, yhat2)

10 print(cm1)

Executing the above block of code, we see the following output:

1 304.3224980831146

2 0

3 0 1 2

4 D1 0 10 0

5 D2 0 0 10

6 D3 10 0 0

7 D4 17 0 0

From the output, we see that it took the Python program about 304.32 seconds
to finish the computation.

11.4 Summary

In this chapter, we implemented the genetic k-modes algorithm. We also illus-
trated the algorithm with examples and tested the sensitivity of the mutation
probability. The genetic k-modes algorithm increases the clustering accuracy
of the k-modes algorithm. However, the running time of the genetic k-modes
algorithm is significantly longer than that of the k-modes algorithm. The
Python implementation is about 30 times slower than the C++ implementa-
tion given in [94].

The genetic k-modes algorithm implemented in this chapter is one of the
search-based clustering algorithms. Other search-based clustering algorithms
include the genetic k-means algorithm (GKA) [159] and clustering algorithms
based on the tabu search method [90].
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The FSC Algorithm

In fuzzy clustering algorithms such as the c-means algorithm, each record has
a fuzzy membership associated with each cluster that indicates the degree of
association of the record to the cluster. In the fuzzy subspace clustering (FSC)
algorithm, each attribute has a fuzzy membership associated with each cluster
that indicates the degree of importance of the attribute to the cluster. In this
chapter, we shall implement the FSC algorithm [89, 90].

12.1 Description of the Algorithm

The FSC algorithm is an extension of the k-means algorithm for subspace
clustering. The FSC algorithm imposes weights on the distance measure of
the k-means algorithm. Given a dataset X = {x0,x1, · · · ,xn−1} consisting of
n records, each of which is described by d numeric attribute. Recall that the
objective function of the k-means algorithms is

E =

k−1∑
j=0

∑
x∈Cj

Deuc(x,µj)
2 =

k−1∑
j=0

∑
x∈Cj

d−1∑
r=0

(xr − µjr)
2,

where C0, C1, · · · , Ck−1 are k clusters, µj (0 ≤ j ≤ k − 1) is the center of
cluster Cj , Deuc(·, ·) is the Euclidean distance, and xr and µjr are the rth
components of x and µj , respectively.

The objective function of the FSC algorithm is defined as

Eα,ϵ =

k−1∑
j=0

∑
x∈Cj

d−1∑
r=0

wα
jr(xr − µjr)

2 + ϵ

k−1∑
j=0

d−1∑
r=0

wα
jr, (12.1)

where α ∈ (1,∞) is a weight component or fuzzifier, ϵ is a very small positive
real number used to prevent divide-by-zero error, and wjr (0 ≤ j ≤ k− 1, 0 ≤
r ≤ d − 1) is the (j, r) entry of the so called fuzzy dimension weight matrix
W . A k × d weight matrix W satisfies the following conditions:

wjr ∈ [0, 1], 0 ≤ j ≤ k − 1, 0 ≤ r ≤ d− 1, (12.2a)
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d−1
r=0

wjr = 1, 0 ≤ j ≤ k − 1. (12.2b)

The FSC algorithm tries to minimize the objective function defined in
Equation (12.1) using an iterative process. The iterative process is very similar
to that of the k-means algorithm. That is, the FSC algorithm repeats updating
the cluster centers given the fuzzy dimension weight matrix and updating the
fuzzy dimension weight matrix given the cluster centers.

At the beginning, the FSC algorithm initializes the cluster centers by se-
lecting k distinct records randomly and initializes the fuzzy dimension weight

matrix equally, i.e., w
(0)
jr = 1

d for j = 0, 1, · · · , k − 1, r = 0, 1, · · · , d− 1. Sup-

pose µ
(0)
j (j = 0, 1, · · · , k − 1) are the initial cluster centers. Then the FSC

algorithm updates the clusters C0, C1, · · · , Ck−1 based on the initial cluster
centers and the initial fuzzy dimension weight matrix as follows:

C
(0)
j =


x ∈ X : Deuc


x,µ

(0)
j ,W (0)


= min

0≤l≤k−1
Deuc


x,µ

(0)
l ,W (0)


,

(12.3)
for j = 0, 1, · · · , k − 1, where

Deuc


x,µ

(0)
l ,W (0)


=

d−1
r=0


w

(0)
lr

α 
xr − µ

(0)
lr

2

, 0 ≤ l ≤ k − 1. (12.4)

Then the FSC algorithm updates the fuzzy dimension weight matrix based
on the cluster centers and the clusters according to the following formula:

w
(1)
jr =



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(0)
j
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(0)
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xl − µ

(0)
jl
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(12.5)

for j = 0, 1, · · · , k − 1 and r = 0, 1, · · · , d− 1.
Once the fuzzy dimension weight matrix is updated. The FSC algorithm

will update the cluster centers based on the fuzzy dimension weight matrix
and the clusters according to the following formula:

µ
(1)
jr =


x∈C

(0)
j

xr

|C(0)
j |

(12.6)

for j = 0, 1, · · · , k − 1 and r = 0, 1, · · · , d− 1.
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The FSC algorithm repeats the above three steps until the change of the
objective function between two iterations is small or the maximum number of
iterations is reached.

12.2 Implementation

The implementation of the FSC algorithm is similar to those of the k-means
algorithm and the c-means algorithm. The following code implements the FSC
algorithm:

1 def fsc(X, k=3, alpha=2, tol=1e-6, maxit =100):

2 if alpha <= 1:

3 raise ValueError("Invalid alpha")

4 X = np.ascontiguousarray(X)

5 n, d = X.shape

6 epsilon = 1e-8

7 ind = np.random.choice(n, k, replace=False)

8 clusterCenters = X[ind ,:]

9 featureWeight = np.ones((k, d)) / d

10 dm = np.zeros ((n, k))

11 for i in range(k):

12 dm[:,i] = np.sum(np.multiply(np.square(X-

clusterCenters[i,:]), d**(-alpha)), axis =1)

13 clusterMembership = np.argmin(dm, axis =1)

14 objectiveValue = np.sum(dm[list(range(n)),

clusterMembership ]).item()

15 numIter = 1

16 while numIter < maxit:

17 # update feature weight

18 for i in range(k):

19 bInd = clusterMembership ==i

20 if np.any(bInd):

21 dv = np.pow(np.sum(np.square(X[bInd ,:]-

clusterCenters[i,:])+epsilon , axis =0),

-1/(alpha -1))

22 featureWeight[i,:] = dv / np.sum(dv)

23 else:

24 featureWeight[i,:] = 1/d

25 # update cluster centers

26 for i in range(k):

27 bInd = clusterMembership ==i

28 if np.any(bInd):

29 clusterCenters[i,:] = np.mean(X[bInd], axis

=0)
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30 else:

31 clusterCenters[i,:] = X[np.random.randint

(0, n) ,:]

32 # update cluster membership

33 for i in range(k):

34 dm[:,i] = np.sum(np.multiply(np.square(X-

clusterCenters[i,:]), featureWeight[

clusterMembership ,:]** alpha), axis =1)

35 clusterMembership = np.argmin(dm, axis =1)

36 objectiveValue_ = objectiveValue

37 objectiveValue = np.sum(dm[list(range(n)),

clusterMembership ]).item()

38 numIter += 1

39 if np.abs(objectiveValue -objectiveValue_) < tol:

40 break;

41 return clusterMembership , clusterCenters , featureWeight

, objectiveValue , numIter

The cluster centers are initialized similarly as in the k-means algorithm and
the c-means algorithm. The feature weights are initialized to be 1/d, where d
is the number of features.

At each iterative process, we update the feature weights, the cluster cen-
ters, and the cluster memberships. We calculate the objective function value
and compare it with the previous value. If the absolute difference between
two consecutive values is less than the tolerance, we terminate the iterative
process. Vectorized operations are used to improve performance.

Since the FSC algorithm also uses random initial cluster centers, we can
run the algorithm multiple times to get the best run. The following code
implements the multiple run of the algorithm:

1 def fsc2(X, k=3, alpha=2, numrun =10, maxit =100):

2 bestCM , bestCC , bestFW , bestOV , bestIters = fsc(X, k=k,

alpha=alpha , maxit=maxit)

3 print([bestOV , bestIters ])

4 for i in range(numrun -1):

5 cm, cc, fw , ov , iters = fsc(X, k=k, alpha=alpha ,

maxit=maxit)

6 print([ov , iters])

7 if ov < bestOV:

8 bestCM , bestCC , bestFW , bestOV , bestIters = cm ,

cc, fw, ov, iters

9 return bestCM , bestCC , bestFW , bestOV , bestIters
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12.3 Examples

In this section, we apply the FSC algorithm implemented in the previous
section to a synthetic dataset and the Iris dataset.

Before proceeding to apply the FSC algorithm, we first load the necessary
libraries by executing the following block of code:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from ucimlrepo import fetch_ucirepo

4 from dcutil import createCM

5 from kmeans import kmeans2

The Python module dcutil contains the function createCM defined in Listing
6.1. We can just import the function from the module without copying the
code of the function. We also import the function kmeans2 from the module
kmeans.

To illustrate the FSC algorithm’s performance, we create a synthetic
dataset with clusters embedded in subspaces. We can create such a dataset as
follows:

1 np.random.seed (1)
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3 y = np.zeros (300, dtype=int)
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Executing the above block of code will create a dataset with three subspace
clusters. We can plot the dataset as follows:

1 fig = plt.figure(figsize =(5, 5))

2 ax = fig.add_subplot(projection='3d')
3 ax.scatter(X[:,0], X[:,1],X[:,2], color="k", s=12)

4 ax.set_xlabel('x')
5 ax.set_ylabel('y')
6 ax.set_zlabel('z')
7 plt.savefig("3d.pdf", bbox_inches='tight')

Figure 12.1 shows the resulting dataset.
To apply the FSC algorithm to the synthetic dataset, we run the following

block of code:
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FIGURE 12.1: A synthetic dataset with three subspace clusters.

1 yhat , cc, fw, ov, iters = fsc2(X, k=3, alpha =2)

2 cm1 = createCM(y, yhat)

3 print([ov , iters])

4 print(cm1)

5 print(np.array_str(fw , precision=4, suppress_small=True))

After executing the above code, we see the following output:

1 [144.9954802577933 , 6]

2 [134.7169446057925 , 17]

3 [227.57681283348646 , 6]

4 [109.39339832420217 , 9]

5 [200.07942734318306 , 11]

6 [229.05591137401333 , 100]

7 [136.70664242925852 , 9]

8 [243.740544549417 , 7]

9 [126.38228696270194 , 10]

10 [109.39339832420217 , 8]
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11 [109.39339832420217 , 9]

12 0 1 2

13 0 0 100 0

14 1 0 0 100

15 2 50 25 25

16 [[0.4332 0.4838 0.083 ]

17 [0.041 0.0421 0.9169]

18 [0.1319 0.0402 0.8279]]

From the output, we see that two subspace clusters are correctly identified.
One subspace cluster is not fully recovered. The subspace dimensions of the
clusters are correctly identified by the feature weights. Figure 12.2 shows the
clustering results obtained by the FSC algorithm.
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FIGURE 12.2: Clusters obtained by the FSC algorithm.

We can apply the k-means algorithm multiple times to the synthetic
dataset as follows:

1 yhat , bcc , bov , biters = kmeans2(X)

2 cm2 = createCM(y, yhat)

3 print([bov , biters ])

4 print(cm2)
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We can apply the k-means algorithm multiple times to the synthetic
dataset as follows:

1 yhat , bcc , bov , biters = kmeans2(X)

2 cm2 = createCM(y, yhat)

3 print([bov , biters ])

4 print(cm2)
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FIGURE 12.3: Clusters obtained by the k-means algorithm.

We see the following output:

1 [3272.75753139638 , 6]

2 [3307.157048793695 , 11]

3 [3093.6628681540224 , 5]

4 [3045.743807105996 , 5]

5 [3362.2320027642445 , 5]

6 [3093.6628681540224 , 6]

7 [3093.6628681540224 , 8]

8 [3392.207762740887 , 9]

9 [3045.743807105996 , 5]

10 [3045.743807105996 , 5]

11 [3045.743807105996 , 5]

12 0 1 2

13 0 0 0 100

14 1 0 69 31

15 2 53 47 0
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The resulting confusion matrix shows that two subspace clusters are not fully
recovered. Figure 12.3 shows the clustering results obtained by the k-means
algorithm.

The following code shows how to apply the FSC algorithm to the Iris
dataset:

1 iris = fetch_ucirepo(id=53)

2 X = iris.data.features

3 y = iris.data.targets

4

5 yhat , cc, fw, ov, iters = fsc2(X, k=3, alpha =3)

6 cm1 = createCM(y, yhat)

7 print([ov , iters])

8 print(cm1)

9 print(np.array_str(fw , precision=4, suppress_small=True))

Executing the above block of code gives the following output:

1 [0.8286676232227034 , 10]

2 [0.888924195786221 , 8]

3 [0.8286676232227034 , 16]

4 [0.8286676232227034 , 10]

5 [0.888924195786221 , 8]

6 [0.888924195786221 , 9]

7 [1.5975066713188142 , 5]

8 [0.8286676232227034 , 7]

9 [0.8286676232227034 , 14]

10 [0.8286676232227034 , 14]

11 [0.8286676232227034 , 10]

12 0 1 2

13 Iris -setosa 0 50 0

14 Iris -versicolor 48 0 2

15 Iris -virginica 4 0 46

16 [[0.1544 0.2564 0.1583 0.4309]

17 [0.138 0.1277 0.2804 0.4538]

18 [0.1523 0.3082 0.1652 0.3743]]

The resulting confusion matrix shows that only six records were misclassified
by the FSC algorithm.

12.4 Summary

In this chapter, we implemented the FSC algorithm and illustrated the al-
gorithm with several examples. The FSC algorithm is an extension of the
k-means algorithm for subspace clustering. The FSC algorithm also applies
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the idea of fuzzy sets to attribute selection. Rather than treating an attribute
is relevant or not relevant to a cluster, the FSC algorithm assigns a weight to
the attribute to indicate the importance of the attribute. More information
about the FSC algorithm and other relevant algorithms (e.g., mean shift for
subspace clustering) can be found in [89] and [90].
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The Gaussian Mixture
Algorithm

Clustering based on Gaussian mixture models is a classical and powerful ap-
proach. [38] summarized sixteen Gaussian mixture models, which result in six-
teen clustering algorithms. These sixteen Gaussian mixture models are based
on different assumptions on the component variance matrices. Four commonly
used Gaussian mixture models are [38]:

(a) No restriction is imposed on the component variance matrices
Σ0,Σ1,· · · , and Σk−1;

(b) Σ0 = Σ1 = · · · = Σk−1 = Σ;

(c) Σ0 = Σ1 = · · · = Σk−1 = Diag(σ2
0 , σ

2
1 , · · · , σ2

d−1), where
σ0, σ1, · · · , σd−1 are unknown;

(d) Σ0 = Σ1 = · · · = Σk−1 = Diag(σ2, σ2, · · · , σ2), where σ is unknown.

In this chapter, we implement the clustering algorithm based on the first
Gaussian mixture model, i.e., the most general one.

13.1 Description of the Algorithm

LetX = {x0,x1, · · · ,xn−1} be a numeric dataset containing n records, each of
which is described by d numeric attributes. In Gaussian mixture models, each
record in the dataset X is assumed to be a sample drawn from a distribution
characterized by the following probability density function [38]:

f(x) =
k−1∑
j=0

pjΦ(x|µj ,Σj), (13.1)

where µj is the mean of the jth component, Σj is the variance of the jth
component, pj is the mixing proportion of the jth component, and Φ is the
probability density function of the multivariate Gaussian distribution.
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The mixing proportions p0, p1, · · · , pk−1 in Equation (13.1) satisfy the fol-
lowing conditions:

(a) pj ∈ (0, 1) for j = 0, 1, · · · , k − 1;

(b) The sum of the mixing proportions is equal to 1, i.e.,

k−1
j=0

pj = 1.

The probability density function of the multivariate Gaussian distribution
is defined as

Φ(x|µ,Σ) = 1
(2π)d|Σ|

exp


−1

2
(x− µ)TΣ−1(x− µ)


, (13.2)

where µ is the mean, Σ is the variance matrix, and |Σ| is the determinant of
Σ. Here we assume that x and µ are column vectors.

There are two approaches to cluster a dataset based on the Gaussian mix-
ture model [38]: the mixture approach and the classification approach. In the
mixture approach, the likelihood is maximized over the mixture parameters
(i.e., µj and Σj). In the classification approach, the likelihood is maximized
over the mixture parameters as well as over the identifying labels of the mix-
ture component origin for each record.

In this chapter, we implement the Gaussian mixture model-based cluster-
ing algorithm based on the first approach, i.e., the mixture approach. In this
approach, the parameters that need to be estimated are

Θ = (p0, p1, · · · , pk−1,µ0,µ1, · · · ,µk−1,Σ0,Σ1, · · · ,Σk−1).

We use the EM algorithm [178] to estimate these parameters by maximizing
the log-likelihood. Given the dataset X, the log-likelihood is defined as

L(Θ;X) =
n−1
i=0

ln




k−1
j=0

pjΦ(xi|µj ,Σj)


 . (13.3)

To estimate the parameter Θ, the EM algorithm starts with an initial
parameter Θ(0) and repeats the E-step and the M-step until it converges or
the maximum number of iterations is reached. In the E-step, the conditional
probabilities tj(xi) (0 ≤ j ≤ k− 1, 0 ≤ i ≤ n− 1) that xi comes from the jth
component are calculated according to the following equation [38]:

tj(xi) =
pjΦ(xi|µj ,Σj)

k−1
s=0

psΦ(xi|µs,Σs)

, (13.4)

where pj ,µj ,Σj (0 ≤ j ≤ k − 1) are current estimates of Θ.
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In the M-step, the parameter Θ is estimated based on the conditional
probabilities tj(xi) (0 ≤ j ≤ k − 1, 0 ≤ i ≤ n− 1) according to the following
equations [38]:

pj =

n−1
i=0

tj(xi)

k−1
s=0

n−1
i=0

ts(xi)

, (13.5a)

µj =

n−1
i=0

tj(xi)xi

n−1
i=0

tj(xi)

, (13.5b)

Σj =

n−1
i=0

tj(xi)(xi − µj) · (xi − µj)
T

n−1
i=0

tj(xi)

=
1

n−1
i=0

tj(xi)




tj(x1)(x1 − µj)
T

tj(x2)(x2 − µj)
T

...
tj(xn)(xn − µj)

T




T 


(x1 − µj)
T

(x2 − µj)
T

...
(xn − µj)

T


 , (13.5c)

for j = 0, 1, · · · , k − 1.
In our implementation, the initial parameter Θ(0) are chosen as follows:

pj =
1

k
, (13.6a)

µj = xij , (13.6b)

Σj = Diag(σ2
0 , σ

2
1 , · · · , σ2

d−1), (13.6c)

for j = 0, 1, · · · , k − 1, where ij (0 ≤ j ≤ k − 1) are random integers chose
from {0, 1, · · · , n− 1} and

σ2
s =

1

n− 1

n−1
i=0

x2
is −

1

n(n− 1)


n−1
i=0

xis

2

, s = 0, 1, · · · , d− 1.

Here xis is the sth component of xi and σ2
s is the sample variance of the sth

attribute.
Once the parameter Θ is determined by the EM algorithm, the cluster

memberships γ0, γ1, · · · , γn−1 can be derived from Equation (13.4) as follows:

γi = argmax
0≤j≤k−1

tj(xi), i = 0, 1, · · · , n− 1. (13.7)
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13.2 Implementation

In this section, we implement the Gaussian mixture clustering algorithm in
Python with the help of the NumPy and SciPy libraries. Like the k-means
algorithm, the Gaussian mixture clustering algorithm can be implemented as
follows:

1 def gmc(X, k=3, tol=1e-8, maxit =100):

2 X = np.ascontiguousarray(X)

3 n, d = X.shape

4 mixingProp = np.ones(k) / k

5 ind = np.random.choice(n, k, replace=False)

6 clusterCenters = X[ind ,:]

7 varianceMatrices = [np.diag(np.var(X, axis =0))] * k

8 density = np.zeros((n, k))

9 for i in range(k):

10 density[:,i] = mixingProp[i]* multivariate_normal(

mean=clusterCenters[i,:], cov=varianceMatrices[

i]).pdf(X)

11 conditionalProb = density / np.sum(density , axis=1,

keepdims=True)

12 logLikelihood = np.sum(np.log(np.sum(density , axis =1)))

.item()

13 numIter = 1

14 while numIter < maxit:

15 # M-step

16 dv = np.sum(conditionalProb , axis =0)

17 mixingProp = dv / np.sum(dv)

18 for i in range(k):

19 clusterCenters[i,:] = np.sum(X*conditionalProb

[:,i]. reshape ((n,1)), axis =0)/np.sum(

conditionalProb [:,i])

20 Xc = X - clusterCenters[i,:]

21 varianceMatrices[i] = np.matmul(np.transpose(Xc

), Xc * conditionalProb [:,i]. reshape ((n,1))

)/np.sum(conditionalProb [:,i])

22 # E-step

23 density = np.zeros((n, k))

24 for i in range(k):

25 density[:,i] = mixingProp[i]*

multivariate_normal(mean=clusterCenters[i

,:], cov=varianceMatrices[i]).pdf(X)

26 conditionalProb = density / np.sum(density , axis=1,

keepdims=True)

27 logLikelihood_ = logLikelihood

28 logLikelihood = np.sum(np.log(np.sum(density , axis

=1))).item()
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29 numIter += 1

30 if np.abs(logLikelihood - logLikelihood_) < tol:

31 break;

32 return conditionalProb , clusterCenters , mixingProp ,

logLikelihood , numIter

In Lines 4–7, we initialize the parameters, which include the mixture pro-
portions, the cluster centers, and the covariance matrices. In Lines 8–12, we
calculate the conditional probabilities and the log-likelihood function value
based on the initial values of the parameters.

In the iterative process, we repeat the M-step and the E-step alternatively
to update the parameters. The iterative process is terminated when the ab-
solute difference of the log-likelihood function values from two consecutive
iterations is less than the tolerance.

In our implementation, we use the multivariate normal from the SciPy
library to calculate the probability density function of the multivariate normal
distribution. We try to avoid loops as much as possible to improve the speed
of the program.

The following Python function implements the multiple run of the Gaus-
sian mixture clustering algorithm:

1 def gmc2(X, k=3, numrun =10, maxit =100):

2 bestCP , bestCC , bestMP , bestLL , bestIters = gmc(X, k,

maxit)

3 vLL = np.zeros(numrun)

4 vLL[0] = bestLL

5 for i in range(numrun -1):

6 cp, cc, mp , ll , iters = gmc(X, k, maxit)

7 vLL[i+1] =ll

8 if ll > bestLL:

9 bestCP , bestCC , bestMP , bestLL , bestIters = cp ,

cc, mp, ll, iters

10 return bestCP , bestCC , bestMP , bestLL , bestIters , vLL

Unlike the k-means algorithm, the Gaussian mixture clustering algorithm tries
to maximize the log-likelihood function, which serves as the objective function.
Hence, the best run is determined to be the run with the maximum log-
likelihood function value.

13.3 Examples

In this section, we apply the Gaussian mixture clustering algorithm imple-
mented in the previous section to a synthetic dataset and the Iris dataset.
Before we present the examples, we need to load the necessary libraries by
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solute difference of the log-likelihood function values from two consecutive
iterations is less than the tolerance.

In our implementation, we use the multivariate normal from the SciPy
library to calculate the probability density function of the multivariate normal
distribution. We try to avoid loops as much as possible to improve the speed
of the program.

The following Python function implements the multiple run of the Gaus-
sian mixture clustering algorithm:

1 def gmc2(X, k=3, numrun =10, maxit =100):

2 bestCP , bestCC , bestMP , bestLL , bestIters = gmc(X, k,

maxit)

3 vLL = np.zeros(numrun)

4 vLL[0] = bestLL

5 for i in range(numrun -1):

6 cp, cc, mp , ll , iters = gmc(X, k, maxit)

7 vLL[i+1] =ll

8 if ll > bestLL:

9 bestCP , bestCC , bestMP , bestLL , bestIters = cp ,

cc, mp, ll, iters

10 return bestCP , bestCC , bestMP , bestLL , bestIters , vLL

Unlike the k-means algorithm, the Gaussian mixture clustering algorithm tries
to maximize the log-likelihood function, which serves as the objective function.
Hence, the best run is determined to be the run with the maximum log-
likelihood function value.

13.3 Examples

In this section, we apply the Gaussian mixture clustering algorithm imple-
mented in the previous section to a synthetic dataset and the Iris dataset.
Before we present the examples, we need to load the necessary libraries by
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running the following code:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.stats import multivariate_normal

4 from sklearn.datasets import make_blobs

5 from ucimlrepo import fetch_ucirepo

6 from dcutil import createCM

6 4 2 0 2 4 6

6
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2

0

2

4

FIGURE 13.1: Clusters produced by the Gaussian mixture clustering algo-
rithm on the synthetic dataset. Cluster centers are indicated by the triangles.

First, let us illustrate the Gaussian mixture clustering algorithm with a
synthetic dataset. To do that, we use the following piece of code:

1 centers = [[3, 3], [-3, -3], [3, -3]]

2 X, y = make_blobs(n_samples =300, centers=centers ,

cluster_std =1, random_state =1)

3

4 bcp , bcc , bmp , bll , biters , vLL = gmc2(X, k=3, numrun =100)

5 yhat = np.argmax(bcp , axis =1)

6 cm1 = createCM(y, yhat)

7 print(cm1)

8 print([bll , biters ])
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In the above code, we run the Gaussian mixture clustering algorithm 100
times. Executing the above code, we see the following output:

1 0 1 2

2 0 0 100 0

3 1 0 0 100

4 2 99 1 0

5 [ -1210.3400278163012 , 3]

From the resulting confusion matrix, we see that only one record was mis-
classified. The best log-likelihood function value was about −1210.34 and the
best run terminated in three iterations. Figure 13.1 shows the three clusters
obtained by the best run of the Gaussian mixture clustering algorithm on the
synthetic dataset.
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FIGURE 13.2: Log-likelihood function values of 100 runs of the Gaussian
mixture clustering algorithm on the synthetic dataset.

We can plot the log-likelihood function values from the 100 runs as follows:

1 fig , ax = plt.subplots(1, 1, figsize =(6, 4))

2 ax.scatter(range(len(vLL)), vLL , color="black")

3 ax.set_xlabel("Run number")

4 ax.set_ylabel("log -likelihood")

5 fig.savefig("300ll.pdf", bbox_inches='tight ')

Figure 13.2 shows the resulting plot. From the figure, we see that the log-
likelihood function values from the 100 runs vary a lot. This indicates that
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the Gaussian mixture clustering algorithm is sensitive to the initial cluster
centers.

To apply the Gaussian mixture clustering algorithm to the Iris dataset 100
times, we use the following code:

1 iris = fetch_ucirepo(id=53)

2 X = iris.data.features

3 y = iris.data.targets

4

5 bcp , bcc , bmp , bll , biters , vLL = gmc2(X, k=3, numrun =100)

6 yhat = np.argmax(bcp , axis =1)

7 cm1 = createCM(y, yhat)

8 print(cm1)

9 print([bll , biters ])

Executing the above block of code gives the following output:

1 0 1 2

2 Iris -setosa 50 0 0

3 Iris -versicolor 0 3 47

4 Iris -virginica 0 44 6

5 [ -204.81921785043306 , 3]

From the output, we see that 9 records were misclassified in the best run,
which was terminated after three iterations.

Figure 13.3 shows the log-likelihood function values of the 100 runs of the
Gaussian mixture clustering algorithm on the Iris dataset. The log-likelihood
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FIGURE 13.3: Log-likelihood function values of 100 runs of the Gaussian
mixture clustering algorithm on the Iris dataset.
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function values have a big range, indicating that the Gaussian mixture clus-
tering algorithm is sensitive to the initial cluster centers.

13.4 Summary

In this chapter, we implemented one of the Gaussian mixture clustering algo-
rithms summarized in [38]. The Gaussian mixture clustering algorithms are
model-based clustering algorithms. Mode-based clustering is a major approach
to cluster analysis and has a long history. [27] presented a survey of cluster
analysis based on probabilistic models. Recent work on model-based clustering
can be found in [276].
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14

The KMTD Algorithm

The KMTD (k-means-type clustering based on the t-distribution) algorithm
[258] is a model-based clustering algorithm developed for clustering noisy data.
In this chapter, we introduce the KMTD algorithm and its implementation.

14.1 Description of the Algorithm

The KMTD algorithm is motivated by how the k-means algorithm is derived
a Gaussian mixture model [258]. In the KMTD algorithm, the data points
are assumed to be drawn from a special multivariate t-mixture model. Since
the t-distribution has heavier tails than the Gaussian distribution, the KMTD
algorithm is expected to be more robust than Gaussian mixture clustering for
handling noisy data.

To describe the t-mixture model (TMM), we let f(x; ν,µ,Σ) be the prob-
ability density function of a multivariate t-distribution with parameters ν, µ,
Σ. The probability density function is defined as [101]:

f(x; ν,µ,Σ) =

Γ
(
ν+d
2

) [
1 +

1

ν
(x− µ)TΣ−1(x− µ)

]− ν+d
2

Γ
(
ν
2

)
ν

d
2 π

d
2 |Σ|

1
2

, (14.1)

where Γ(·) is the gamma function and d denotes the number of dimensions
of the data. It is worth pointing out that the covariance matrix of the t-
distribution is not Σ but ν

ν−2Σ, which exists only when ν > 2.
The probability density function of a mixture of multivariate t-

distributions can be expressed as:

f(x) =
k−1∑
l=0

plf(x; νl,µl,Σl), (14.2)

where k is the number of components, pl’s are positive coefficients that satisfy
the following condition

k−1∑
l=0

pl = 1. (14.3)
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The KMTD algorithm is derived by assuming a special case of the TMM
where the mixture components are spherical and share the same parameters
Σ, i.e., Σl = σ2I and νl = ν for l = 0, 1, . . . , k − 1, where I is a d× d identity
matrix, σ > 0, and ν > 0. The probability density function of the special
t-distribution is

f(x; ν,µ, σ) =

Γ
�
ν+d
2

 
1 +

1

νσ2
∥x− µ∥2

− ν+d
2

Γ
�
ν
2


ν

d
2 π

d
2 σd

, (14.4)

where ∥ · ∥ is the L2 norm.
The special TMM has the following parameters:

Θ = (p0, p1, · · · , pk−1,µ0,µ1, · · · ,µk−1).

The parameters ν and σ of the t-distribution are user-specified. Similar to the
Gaussian mixture clustering algorithm, we use the EM algorithm for param-
eter estimation.

Let X be the random variable that represents the data and let Z be the
latent variable that represents the cluster membership of X. That is, Z = j
if X is generated by the jth component, where 0 ≤ j ≤ k − 1. Let D =
{x0,x1, . . . ,xn−1} be a set of n observations.

In the E-step, we calculate the expected value of the log-likelihood function
of Θ with respect to the current conditional distribution of Z given the data
D and the current estimates of the parameters Θ′. This is done as follows:

L(Θ|D,Θ′) = E


ln

n−1
i=0

f(xi; ν,µ, σ
2I)

Θ
′



= E


n−1
i=0

ln f(xi; ν,µ, σ
2I)

Θ
′



= E




n−1
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ln




k−1
j=0

P (Z = j)f(xi; νj ,µj , σ
2I)




Θ′




=
n−1
i=0

ln




k−1
j=0

pjf(xi; ν,µj , σ)


 , (14.5)

which is just the log-likelihood. Here pj = P (Z = j) for j = 0, 1, . . . , k − 1.
The conditional probabilities of assignments given the current estimates

of the parameters are calculated as follows. By using the Bayes’ rule, we can
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calculate the conditional probability of Zi as follows:

P (Zi = l|Xi = xi,Θ) =
P (Zi = l,Xi = xi|Θ)

P (Xi = xi|Θ)

=
P (Xi = xi|Zi = l,Θ)P (Zi = l)

P (Xi = xi|Θ)

=
f(xi; νl,µl,Σl)plk

h=1 phf(xi; νh,µh,Σh)
. (14.6)

Combining Equation (14.6) and Equation (14.4), we can compute the con-
ditional probabilities as follows:

γi,l = P (Zi = l|Xi = xi) =
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. (14.7)

In the M-step, we maximize the log-likelihood function to estimate the
parameters by fixing γi,l’s. Note that the weighting coefficients are constrained
by the conditions given in Equation (14.3). Using the method of Lagrange
multipliers, we maximize the following objective function

L2(µ0, . . . ,µk−1, p0, . . . , pk−1, λ)

=
n−1
i=0

ln


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k−1
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pjf(xi; ν,µj , σ)


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
k−1
l=0

pl − 1


. (14.8)

Equating the derivatives of L2 with respect to pl’s and λ to zero, we get

∂L2

∂pl
=

n−1
i=0

f(xi; ν,µl, σ)k
h=1 phf(xi; ν,µh, σ)

− λ = 0.

Plugging Equation (14.7) into the above equation gives

n−1
i=0

γi,l
pl

− λ = 0. (14.9)

Combining Equation (14.9) and Equation (14.3), we get

pl =
1

n

n−1
i=0

γi,l, l = 0, 1, 2, . . . , k − 1. (14.10)
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Similarly, equating the derivatives of L2 with respect to µl’s to zero, we get

∂L2

∂µl

=

n−1∑
i=0

plf(xi; ν,µl, σ)
− 2

νσ2 (xi − µl)
T

1 +
1

νσ2
∥xi − µl∥2

∑k−1
h=0 phf(xi; ν,µl, σ)

= 0.

Combining Equation (14.9) and the above equation gives

n−1∑
i=0

γi,l
− 2

νσ2 (xi − µl)
T

1 +
1

νσ2
∥xi − µl∥2

= 0

or

µl =

∑n−1
i=0

γi,lxi

νσ2 + ∥xi − µl∥2∑n−1
i=0

γi,l
νσ2 + ∥xi − µl∥2

. (14.11)

Although Equation (14.11) does not give an explicit solution of µl, it gives a
recursive formula to solve µl.

In the KMTD algorithm, the parameters ν and σ are specified by the user.
Those two parameters are not estimated from the data during the clustering
process.

14.2 Implementation

The implementation of the KMTD algorithm is similar to that of the Gaus-
sian mixture clustering algorithm (see Section 13.2). The following function
implements the KMTD algorithm:

1 def kmtd(X, k=3, nu=3, sigma=None , tol=1e-8, maxit =100):

2 X = np.ascontiguousarray(X)

3 n, d = X.shape

4 mixingProp = np.ones(k) / k

5 ind = np.random.choice(n, k, replace=False)

6 clusterCenters = X[ind ,:]

7 if sigma is None:

8 sigma = np.sqrt(np.mean(np.var(X, axis =0))*(nu -2)/

nu)

9 density = np.zeros((n, k))

10 for i in range(k):

11 density[:,i] = mixingProp[i]* multivariate_t(loc=

clusterCenters[i,:], shape=sigma **2*np.eye(d),

df=nu).pdf(X)
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12 conditionalProb = density / np.sum(density , axis=1,

keepdims=True)

13 logLikelihood = np.sum(np.log(np.sum(density , axis =1)))

.item()

14 dm = np.zeros ((n,k))

15 numIter = 1

16 while numIter < maxit:

17 # M-step

18 dv = np.sum(conditionalProb , axis =0)

19 mixingProp = dv / np.sum(dv)

20 for i in range(k):

21 dm[:,i] = np.sum(np.square(X-clusterCenters[i

,:]), axis =1)

22 for i in range(k):

23 vw = conditionalProb [:,i]/(nu*sigma **2 + dm[:,i

])

24 clusterCenters[i,:] = np.sum(X*vw.reshape ((n,1)

), axis =0)/np.sum(vw)

25 # E-step

26 density = np.zeros((n, k))

27 for i in range(k):

28 density[:,i] = mixingProp[i]* multivariate_t(loc

=clusterCenters[i,:], shape=sigma **2*np.eye

(d), df=nu).pdf(X)

29 conditionalProb = density / np.sum(density , axis=1,

keepdims=True)

30 logLikelihood_ = logLikelihood

31 logLikelihood = np.sum(np.log(np.sum(density , axis

=1))).item()

32 numIter += 1

33 if np.abs(logLikelihood - logLikelihood_) < tol:

34 break;

35 return conditionalProb , clusterCenters , mixingProp ,

logLikelihood , numIter

In the above function, the default value of the parameter ν is 3. The parameter
σ will be estimated from the data if it is not supplied by the user.

The following function implements the multiple run of the KMTD algo-
rithm:

1 def kmtd2(X, k=3, nu=3, sigma=None , numrun =10, maxit =100):

2 bestCP , bestCC , bestMP , bestLL , bestIters = kmtd(X, k=k

, nu=nu, sigma=sigma , maxit=maxit)

3 vLL = np.zeros(numrun)

4 vLL[0] = bestLL

5 for i in range(numrun -1):

6 cp, cc, mp , ll , iters = kmtd(X, k=k, nu=nu , sigma=

sigma , maxit=maxit)

7 vLL[i+1] =ll
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8 if ll > bestLL:

9 bestCP , bestCC , bestMP , bestLL , bestIters = cp ,

cc, mp, ll, iters

10 return bestCP , bestCC , bestMP , bestLL , bestIters , vLL

Since we want to maximize the log-likelihood function, the best run is deter-
mined to be the run that has the maximum log-likelihood function value.

14.3 Examples

In this section, we apply the KMTD algorithm implemented in the previous
section to a synthetic dataset and the Iris dataset. Before we run the algorithm,
we need to load the necessary libraries by running the following code:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.stats import multivariate_t

4 from sklearn.datasets import make_blobs

5 from ucimlrepo import fetch_ucirepo

6 from dcutil import createCM

First, let us illustrate the KMTD algorithm with a synthetic dataset. To
do that, we use the following piece of code:

1 centers = [[3, 3], [-3, -3], [3, -3]]

2 X, y = make_blobs(n_samples =300, centers=centers ,

cluster_std =1, random_state =1)

3

4 bcp , bcc , bmp , bll , biters , vLL = kmtd2(X, k=3, nu=3,

numrun =100)

5 yhat = np.argmax(bcp , axis =1)

6 cm1 = createCM(y, yhat)

7 print(cm1)

8 print([bll , biters ])

In the above code, we run the KMTD algorithm 100 times. Executing the
code above produces the following output:

1 0 1 2

2 0 0 0 100

3 1 1 99 0

4 2 99 0 1

5 [ -1330.0969096201227 , 15]
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In the above code, we run the KMTD algorithm 100 times. Executing the
code above produces the following output:

1 0 1 2

2 0 0 0 100

3 1 1 99 0

4 2 99 0 1

5 [ -1330.0969096201227 , 15]
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FIGURE 14.1: Clusters produced by the KMTD algorithm on the synthetic
dataset. Cluster centers are indicated by the triangles.

From the resulting confusion matrix, we see that two records were misclassi-
fied. The best log-likelihood function value was about −1330.1 and the best
run terminated in 15 iterations. Figure 14.1 shows the three clusters obtained
by the best run of the KMTD algorithm on the synthetic dataset.

We can plot the log-likelihood function values from the 100 runs as follows:

1 fig , ax = plt.subplots(1, 1, figsize =(6, 4))

2 ax.scatter(range(len(vLL)), vLL , color="black")

3 ax.set_xlabel("Run number")

4 ax.set_ylabel("log -likelihood")

5 fig.savefig("300 llkmtd.pdf", bbox_inches='tight ')

Figure 14.2 shows the resulting plot. From the figure, we see that the log-
likelihood function values from the 100 runs form two clear groups. This indi-
cates that the KMTD algorithm is not sensitive to the initial cluster centers.

To apply the KMTD algorithm to the Iris dataset 100 times, we use the
following code:
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FIGURE 14.2: Log-likelihood function values of 100 runs of the KMTD algo-
rithm on the synthetic dataset.

1 iris = fetch_ucirepo(id=53)

2 X = iris.data.features

3 y = iris.data.targets

4

5 bcp , bcc , bmp , bll , biters , vLL = kmtd2(X, k=3, nu=3,

numrun =100)

6 yhat = np.argmax(bcp , axis =1)

7 cm1 = createCM(y, yhat)

8 print(cm1)

9 print([bll , biters ])

Executing the above block of code gives the following output:

1 0 1 2

2 Iris -setosa 50 0 0

3 Iris -versicolor 0 48 2

4 Iris -virginica 0 14 36

5 [ -512.6709994811413 , 69]

From the output, we see that 16 records were misclassified in the best run,
which was terminated after 69 iterations.

Figure 14.3 shows the log-likelihood function values of the 100 runs of the
KMTD algorithm on the Iris dataset. The log-likelihood function values also
form two clear groups, indicating that the KMTD algorithm is not sensitive
to the initial cluster centers.
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FIGURE 14.3: Log-likelihood function values of 100 runs of the KMTD algo-
rithm on the Iris dataset.

14.4 Summary

In this chapter, we implemented the KMTD (k-means-type clustering based
on the t-distribution) algorithm [258]. The KMTD algorithm is a model-based
clustering algorithm developed to clusterize noisy data. It is derived under the
assumption of a special case of the t-mixture model where the mixture com-
ponents are spherical and share the same parameters. Experimental results
suggest that the KMTD algorithm is less sensitive to initial cluster centers
compared to the Gaussian mixture model.
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The Probability Propagation
Algorithm

The probability propagation algorithm [98] is a graph-based clustering algo-
rithm that can identify arbitrarily shaped clusters. In this chapter, we intro-
duce this algorithm and its implementations.

15.1 Description of the Algorithm

The probability propagation (PP) algorithm consists of two steps [98]: first,
create a stochastic matrix based on a bandwidth parameter; second, propagate
the probabilities by raising the stochastic matrix to powers.

To describe the PP algorithm, we let D = {x0,x1, . . . ,xn−1} denote a
data set containing n records. Let W denote the stochastic matrix, which is
an n × n matrix. The (i, j)-th entry of W represents the probability that xi

chooses xj as its attractor. Here an attractor can be thought as a cluster
center. The stochastic matrix W has the following property:

n−1∑
j=0

wij = 1, i = 0, 1, . . . , n− 1, (15.1)

where wij denotes the (i, j)-th entry of W . The above equations hold because
each record can choose itself as its attractor.

The stochastic matrix is initialized in such a way that the probability of a
record selecting a neighbor as its attractor is proportional to the local density
of the neighbor. Mathematically, the stochastic matrix is initialized as follows.
The local density of a record y is defined as

V (y) =
∑

x∈N(y)

K

(
d(x,y)

δ

)
, (15.2)

where δ is the bandwidth parameter, d(·, ·) is a distance function, K(·) is
a kernel function, and N(y) denotes the set of neighbors of y. The set of
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neighbors is defined as follows:

N(y) = {x ∈ D : d(x,y) < δ}.

Once we have determined the sets of neighbors for all records. We define
the following matrix W ′:

w′
ij =


V (xj), if xj ∈ N(xi),

0, if xj /∈ N(xi).

Then for each i = 0, 1, . . . , n − 1, we find a permutation (i0, i1, . . . , in−1) of
(0, 1, . . . , n− 1) such that

w′
i,i0 ≥ w′

i,i1 ≥ · · · ≥ w′
i,in−1

.

Then the initial stochastic matrix is formulated as follows:

wij =




w′
ij

r∈{i0,i1,...,is} w
′
ir

, if j ∈ {i0, i1, . . . , is},

0, if j /∈ {i0, i1, . . . , is},
(15.3)

where s is a parameter used to control the shape of the clusters.
Once the stochastic matrix is initialized, the probabilities are propagated

as follows:

wij ←
n−1
l=0

wilwlj , i, j = 0, 1, . . . , n− 1,

or in matrix form
W ← W 2. (15.4)

The above probability propagation operation is repeated until the set of at-
tractors does not change. For i = 0, 1, . . . , n− 1, let xi∗ be the attractor of xi.
The attractor’s index can be identified as follows:

i∗ = arg max
0≤j≤n−1

w∗
ij ,

where W ∗ is the converged stochastic matrix.
There are several choices of kernel functions and distance functions. For

example, the kernel function can be the Gaussian kernel, which is defined by

K(u) =
1√
2π

exp


−u2

2


.

The distance function can be the Euclidean distance function. The band-
width parameter influences the neighborhood structure, as it determines which
points are considered neighbors based on the chosen distance function.
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15.2 Implementation

Implementing the PP algorithm is simple in Python. To optimize performance,
the implementation utilizes vectorized operations. This can be done by using
functions provided by the NumPy library.

The following function implements the PP algorithm:

1 def pp(X, delta=None , s=5, maxit =100):

2 X = np.ascontiguousarray(X)

3 n, d = X.shape

4 W = np.zeros((n,n))

5 dm = squareform(pdist(X))

6 if delta is None:

7 delta = np.percentile(np.mean(dm , axis =0), 10)

8 V = np.exp(-np.square(dm/delta)/2)

9 ind = np.argsort(V)[:, -1:-s-1: -1]

10 val = np.take_along_axis(V, ind , axis=-1)

11 np.put_along_axis(W, ind , val , axis=-1)

12 W = W / np.sum(W, axis=1, keepdims=True)

13 numIter = 1

14 attractors = set(np.argmax(W, axis =1))

15 while numIter < maxit:

16 W = np.linalg.matrix_power(W, 2)

17 attractors_ = attractors.copy()

18 attractors = set(np.argmax(W, axis =1))

19 if attractors == attractors_:

20 break

21 return list(attractors), W

The pp function has four parameters, which include the dataset, the band-
width, the number of top values, and the maximum number of iteration. By
default, the bandwidth is estimated from the distance matrix. It is estimated
to be the 10th percentile of the mean distances from all columns.

In the above code, we use the pdist function from the SciPy library to
calculate the distance matrix. We use the argsort function from the NumPy
library to get the indices of the top s values from each row of the matrix
containing local densities. The corresponding values are extracted by using
the take along axis function from the NumPy library. Then those values
are assigned to the stochastic matrix by using the put along axis function.

The iterative process is also simple. The matrix power function is used to
raise the stochastic matrix to power 2. The iterative process terminates once
the attractor sets from two consecutive iterations remain unchanged.

Since the stochastic matrix contains lots of zeros, we can use a sparse
matrix to represent the stochastic matrix. The following function implements
the PP algorithm by using a sparse stochastic matrix:
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1 def pps(X, delta=None , s=5, maxit =100):

2 X = np.ascontiguousarray(X)

3 n, d = X.shape

4 W = lil_array ((n,n))

5 dm = squareform(pdist(X))

6 if delta is None:

7 delta = np.percentile(np.mean(dm , axis =0), 10)

8 V = np.exp(-np.square(dm/delta)/2)

9 ind = np.argsort(V)[:, -1:-s-1: -1]

10 val = np.take_along_axis(V, ind , axis=-1)

11 np.put_along_axis(W, ind , val , axis=-1)

12 W = W / np.sum(W, axis =1).reshape ((n,1))

13 numIter = 1

14 attractors = set(np.argmax(W, axis =1))

15 while numIter < maxit:

16 W = matrix_power(W, 2)

17 attractors_ = attractors.copy()

18 attractors = set(np.argmax(W, axis =1))

19 if attractors == attractors_:

20 break

21 return list(attractors), W

The pps function is different from the pp function in only a few lines. Many
of the NumPy functions work for the sparse matrix. We do not need to change
the code. We change the matrix power function from the NumPy library to
the one from the SciPy library. The necessary libraries required by the pp

function and the pps function are given in the next section.

15.3 Examples

In this section, we illustrate the PP algorithm with two synthetic datasets
and the Iris dataset. The first synthetic dataset contains spherically shaped
clusters. The second synthetic dataset contains chain-like clusters.

The following code shows the application of the PP algorithm to the first
synthetic dataset:

1 centers = [[3, 3], [-3, -3], [3, -3]]

2 X, y = make_blobs(n_samples =300, centers=centers ,

cluster_std =1, random_state =1)

3

4 ci , W = pp(X)

5 yhat = np.argmax(W, axis =1)

6 cm1 = createCM(y, yhat)

7 print(cm1)
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In the above code, we use the default values of the parameters. Executing the
above block of code gives the following output:

1 20 54 90

2 0 0 100 0

3 1 99 0 1

4 2 0 1 99

The confusion matrix shown above indicates that only two records were mis-
classified. The attractors are records with indices 20, 54, and 90.

Figure 15.1 shows the clusters obtained by applying the PP algorithm to
the first synthetic dataset. From the plot, we see that the attractors are not
exactly located at the centers of the clusters.
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FIGURE 15.1: Clusters produced by the PP algorithm. The attractors are
indicated by triangles.

The following code shows the application of the PP algorithm to the second
synthetic dataset:

1 X, y = make_circles(n_samples =300, noise =0.05, factor =0.4,

random_state =0)

2 ci , W = pp(X, s=10)

3 yhat = np.argmax(W, axis =1)
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The following code shows the application of the PP algorithm to the second
synthetic dataset:

1 X, y = make_circles(n_samples =300, noise =0.05, factor =0.4,
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4 cm1 = createCM(y, yhat)

5 print(cm1)

The second synthetic dataset contains two circles. Each circle is considered as
a cluster as the points in a circle are connected.

Executing the above block of code gives the following output:

1 38 68

2 0 0 150

3 1 150 0

From the output, we see that all records are clusterized correctly.
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FIGURE 15.2: Clusters produced by the PP algorithm. The attractors are
indicated by triangles.

Figure 15.2 shows the clusters obtained by applying the PP algorithm to
the second synthetic dataset. From the plot, we see that the attractors are
not located at the centers of the clusters.

Now let us apply the PP algorithm to the Iris dataset with default values
of the parameters:
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1 iris = fetch_ucirepo(id=53)

2 X = iris.data.features

3 y = iris.data.targets

4

5 ci , W = pp(X)

6 yhat = np.argmax(W, axis =1)

7 cm1 = createCM(y, yhat)

8 print(cm1)

Executing the above block of code gives the following output:

1 0 37 86 94 120 149

2 Iris -setosa 29 21 0 0 0 0

3 Iris -versicolor 0 0 11 34 1 4

4 Iris -virginica 0 0 0 1 35 14

From the confusion matrix, we see that the six clusters are obtained when
default values of the parameters are used.

To reduce the number of clusters, we can increase the parameter s. To do
that, we can use the following code:

1 ci , W = pp(X, s=10)

2 yhat = np.argmax(W, axis =1)

3 cm1 = createCM(y, yhat)

4 print(cm1)

In the above code, we use 10 for the parameter s. Executing the above block
of code gives the following output:

1 17 99

2 Iris -setosa 50 0

3 Iris -versicolor 0 50

4 Iris -virginica 0 50

The output shows that two clusters are obtained.
To test the sparse implementation of the PP algorithm, we use the follow-

ing code:

1 ci , W = pps(X)

2 yhat = np.argmax(W, axis =1)

3 cm1 = createCM(y, yhat)

4 print(cm1)

5 W

Executing the above block of code in Spyder gives the following output:
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1 0 37 86 94 120 149

2 Iris -setosa 29 21 0 0 0 0

3 Iris -versicolor 0 0 11 34 1 4

4 Iris -virginica 0 0 0 1 35 14

5 (150, 150)

6 Out [253]:

7 <Compressed Sparse Row sparse array of dtype 'float64 '
8 with 9751 stored elements and shape (150, 150)>

The sparse implementation produced the same confusion matrix as the full
implementation. The sparse stochastic matrix only saved 9751 elements. The
full stochastic matrix contains 150×150 = 22500 elements. The sparse imple-
mentation saves lots of memory space.

15.4 Summary

In this chapter, we introduced and implemented the Probability Propagation
(PP) algorithm [98], a graph-based clustering method capable of identifying
arbitrarily shaped clusters. We provided two implementations: one utilizing
a full stochastic matrix and another employing a sparse stochastic matrix.
The sparse implementation is particularly useful for handling large datasets
efficiently.
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A Spectral Clustering
Algorithm

Spectral clustering algorithms are graph-based clustering algorithms that are
capable of identifying clusters with arbitrary shapes. In this chapter, we in-
troduce and implement a spectral clustering algorithm.

16.1 Description of the Algorithm

Spectral clustering refers to techniques that utilize the eigenvalues (i.e., the
spectrum) of a dataset’s similarity matrix to group data. A typical spectral
clustering algorithm consists of three steps [2, Chapter 8]: first, construct a
similarity matrix of the dataset; second, use the eigenvalues to map the data
into a feature space where clusters are more obvious; third, apply a classical
clustering algorithm (e.g., k-means) to clusterize the transformed data.

There are multiple ways to construct a similarity matrix from a dataset.
Here we introduce two methods: the ϵ-neighbor method and the Gaussian
method. Let D = {x0,x1, . . . ,xn−1} be a dataset containing n records. Under
the ϵ-neighbor method, the similarity matrix S is constructed as follows:

sij =

{
1, if d(xi,xj) < ϵ,

0, if d(xi,xj) ≥ ϵ,
(16.1)

where ϵ > 0 is a parameter, d(·, ·) is a distance function, and sij is the (i, j)-th
entry of S. Under the Gaussian method, the similarity matrix S is constructed
as follows:

sij = exp

(
−d(xi,xj)

2

2δ2

)
, (16.2)

where δ is a bandwidth parameter.
After constructing the similarity matrix S, we define the following diagonal

matrix E:

eij =

{∑n−1
j=0 sij , if i == j,

0, if i ̸= j.
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The diagonal matrix E is called a degree matrix. Then we construct the sym-
metrically normalized graph Laplacian:

L = E−1/2(E − S)E−1/2 = I − E−1/2SE−1/2. (16.3)

After the graph Laplacian L is constructed, we obtain the eigenvectors
corresponding to the h smallest eigenvalues of L, where h is a parameter. Let
U be the matrix formed by the h eigenvectors. Each eigenvector is a column of
U . Next, we apply the k-means algorithm to the rows of U to identify clusters.

16.2 Implementation

The spectral clustering algorithm described in the previous section can be
implemented in Python with a few lines of code. Since the spectral clustering
algorithm consists of three major steps, we implement each step as a function.
We only need to implement the first two steps as the third step involves
application of an existing clustering algorithm such as k-means.

Constructing the similarity matrix can be done in several ways. The fol-
lowing function implements the ϵ-neighbor method:

1 def epsilonneighbor(dm , epsilon=None):

2 n = dm.shape [0]

3 if epsilon is None:

4 epsilon = np.mean(dm)/5

5 S = np.zeros((n,n))

6 S[dm < epsilon] = 1

7 return S

The input to the above function is a distance matrix and a parameter, which
is the ϵ. If the parameter is not provided, it will be estimated to be one fifth
of the mean distance.

The following function implements the Gaussian method:

1 def gaussian(dm , delta=None):

2 if delta is None:

3 delta = np.mean(dm)/5

4 S = np.exp(-np.square(dm/delta)/2)

5 return S

The Gaussian method constructs a fully connected similarity matrix. This
function also has two inputs: a distance matrix and a bandwidth parameter.
If the bandwidth parameter is not provided, it will be estimated to be one
fifth of the mean distance.
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The following function implements the second step:

1 def spectral(S, h=3):

2 L = laplacian(S, normed=True)

3 ev = np.linalg.eigh(L)

4 ind = np.argsort(ev[0])

5 U = np.asanyarray(ev[1][: ,ind[0:h]], float)

6 U = U/np.sqrt(1e-8+np.sum(np.square(U), axis=1,

keepdims=True))

7 return U

This function takes a similarity matrix as an input and returns a matrix of
selected eigenvectors. This function also has a parameter used to specify how
many eigenvectors will be used. These eigenvectors correspond to the smallest
eigenvalues. The function laplacian from the SciPy library is used to create
the Laplacian matrix. The function eigh from the NumPy library is used to
calculate the eigenvalues and eigenvectors. Each row of the resulting matrix
U is normalized. To prevent division by zero, we add a small constant to the
normalization operation.

16.3 Examples

In this section, we illustrate the spectral clustering algorithm with two syn-
thetic datasets and the Iris dataset. The first synthetic dataset contains spher-
ically shaped clusters. The second synthetic dataset contains chain-like clus-
ters.

The examples in this section requires the following libraries and functions:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.spatial.distance import pdist , squareform

4 from scipy.sparse.csgraph import laplacian

5 from sklearn.datasets import make_blobs , make_circles

6 from sklearn.cluster import SpectralClustering

7 from ucimlrepo import fetch_ucirepo

8 from dcutil import createCM

9 from kmeans import kmeans2

We run the above block of code first before all other code presented in this
section.

The following block of code shows how to apply the spectral clustering
algorithm to the first synthetic dataset:

1 centers = [[3, 3], [-3, -3], [3, -3]]

2 X, y = make_blobs(n_samples =300, centers=centers ,

cluster_std =1, random_state =1)
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3

4 dm = squareform(pdist(X))

5

6 S = epsilonneighbor(dm)

7 U = spectral(S, h=4)

8 bcm , bcc , bov , biters = kmeans2(U, k=3)

9 cm2 = createCM(y, bcm)

10 print([bov , biters ])

11 print(cm2)

In the above code, we use the ϵ-neighbor method to construct the similarity
matrix. We use 4 eigenvectors to create the new dataset. Executing the above
block of code gave the following output:

1 [52.43913620381592 , 5]

2 [51.989854771578365 , 3]

3 [2.8784567908596466 , 2]

4 [52.43913620381592 , 5]

5 [2.8784567908596466 , 3]

6 [2.8784567908596466 , 3]

7 [2.8784567908596466 , 3]

8 [52.43913620381592 , 4]

9 [2.8784567908596466 , 2]

10 [52.43913620381592 , 4]

11 [2.8784567908596466 , 2]

12 0 1 2

13 0 100 0 0

14 1 0 0 100

15 2 0 100 0

The output confirms that all clusters were correctly identified.
To visualize the dataset, the similarity matrix, the transformed data, and

the clustering results, we execute the following code:

1 fig , ax = plt.subplots(2, 2, figsize =(8, 8))

2 ax[0 ,0]. scatter(X[:,0], X[:,1], color="black")

3 ax[0 ,1]. scatter(X[:,0], X[:,1], color="black")

4 ind = np.where(S > 0)

5 for i in range(ind [0]. shape [0]):

6 ij = [ind [0][i], ind [1][i]]

7 ax[0 ,1]. plot(X[ij ,0], X[ij ,1], '-', color="grey")

8 ax[1 ,0]. scatter(U[:,0], U[:,1], color="black")

9 for i in range (3):

10 center = bcc[i,:]

11 ax[1 ,0]. plot(center [0], center [1], "^", markerfacecolor

="white",

12 markeredgecolor="black", markersize =15)

13 markers = ["x", "o", "+"]

14 for i in range (3):
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15 members = bcm == i

16 ax[1 ,1]. plot(X[members , 0], X[members , 1], markers[i],

color="black")

17 ax[0 ,0]. set_title("D")

18 ax[0 ,1]. set_title("S")

19 ax[1 ,0]. set_title("U")

20 ax[1 ,1]. set_title("CM")

Figure 16.1 shows the resulting plot. In the top right subplot, we see the
connections of the points that are relatively close to each other. The bottom
left subplot shows the first two eigenvectors as we cannot visualize all the four
eigenvectors used by the k-means algorithm.

FIGURE 16.1: The first synthetic dataset and results obtained by the spectral
clustering algorithm. Subplots with titles D, S, U, and CM correspond to
the original data, the similarity matrix, the first two columns of U , and the
clustering results.
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To see the result of the similarity matrix constructed by the Gaussian
method, we run the following block of code:

1 S = gaussian(dm)

2 U = spectral(S, h=4)

3 bcm , bcc , bov , biters = kmeans2(U, k=3)

4 cm2 = createCM(y, bcm)

5 print([bov , biters ])

6 print(cm2)

Executing the above block of codes produced the following output:

1 [46.503105388712655 , 2]

2 [46.503105388712655 , 6]

3 [46.503105388712655 , 4]

4 [46.503105388712655 , 8]

5 [46.503105388712655 , 8]

6 [46.503105388712655 , 4]

7 [46.503105388712655 , 8]

8 [46.503105388712655 , 8]

9 [46.503105388712655 , 8]

10 [46.503105388712655 , 7]

11 [46.503105388712655 , 2]

12 0 1 2

13 0 100 0 0

14 1 0 1 99

15 2 1 99 0

From the output, we see that two records were misclassified.
The spectral clustering algorithm is also implemented in the scikit-learn

library. To see the results of applying the scikit-learn algorithm to the first
synthetic dataset, we run the following code:

1 clustering = SpectralClustering(n_clusters =3,

2 assign_labels='discretize ',
3 random_state =0).fit(X)

4 cm = createCM(y, clustering.labels_)

5 print(cm)

After executing the above block of code, we see the following output:

1 0 1 2

2 0 100 0 0

3 1 0 0 100

4 2 1 99 0

The output shows that only one record was misclassified.
Now we test the spectral clustering algorithm on the second synthetic

dataset, which contains two circles. To do that, we use the following code:
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1 X, y = make_circles(n_samples =300, noise =0.05, factor =0.4,

random_state =0)

2

3 dm = squareform(pdist(X))

4

5 S = epsilonneighbor(dm)

6 U = spectral(S, h=4)

7 bcm , bcc , bov , biters = kmeans2(U, k=2)

8 cm2 = createCM(y, bcm)

9 print([bov , biters ])

10 print(cm2)

Executing the above block of code produced the following output:

1 [99.62947526074446 , 4]

2 [99.62947526074446 , 6]

3 [99.62947526074446 , 7]

4 [99.62947526074446 , 4]

5 [99.62947526074446 , 4]

6 [99.62947526074446 , 3]

7 [99.62947526074446 , 5]

8 [99.62947526074446 , 4]

9 [99.62947526074446 , 4]

10 [99.62947526074446 , 6]

11 [99.62947526074446 , 4]

12 0 1

13 0 150 0

14 1 0 150

The output shows that all records were classified correctly.
To visualize the results, we run the following block of code:

1 fig , ax = plt.subplots(2, 2, figsize =(8, 8))

2 ax[0 ,0]. scatter(X[:,0], X[:,1], color="black")

3 ax[0 ,1]. scatter(X[:,0], X[:,1], color="black")

4 ind = np.where(S > 0)

5 for i in range(ind [0]. shape [0]):

6 ij = [ind [0][i], ind [1][i]]

7 ax[0 ,1]. plot(X[ij ,0], X[ij ,1], '-', color="grey")

8 ax[1 ,0]. scatter(U[:,0], U[:,1], color="black")

9 for i in range (2):

10 center = bcc[i,:]

11 ax[1 ,0]. plot(center [0], center [1], "^", markerfacecolor

="white",

12 markeredgecolor="black", markersize =15)

13 markers = ["x", "o", "+"]

14 for i in range (2):

15 members = bcm == i
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16 ax[1 ,1]. plot(X[members , 0], X[members , 1], markers[i],

color="black")

17 ax[0 ,0]. set_title("D")

18 ax[0 ,1]. set_title("S")

19 ax[1 ,0]. set_title("U")

20 ax[1 ,1]. set_title("CM")

The resulting plot produced by the above code is shown in Figure 16.2. The
subplots show the original data, the connections in the similarity matrix, the
first two eigenvectors, and the clustering results. The results show that the
spectral clustering algorithm can find clusters of chain-like shapes.

FIGURE 16.2: The second synthetic dataset and results obtained by the spec-
tral clustering algorithm. Subplots with titles D, S, U, and CM correspond to
the original data, the similarity matrix, the first two columns of U , and the
clustering results.
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We can also apply the scikit-learn function to perform spectral clustering
on the second synthetic data. To do that, we run the following code:

1 clustering = SpectralClustering(n_clusters =2,

2 assign_labels='discretize ',
3 random_state =0).fit(X)

4 cm = createCM(y, clustering.labels_)

5 print(cm)

Again, we use default values for many other parameters of the function. After
executing the above block of code, we see the following output:

1 0 1

2 0 74 76

3 1 70 80

The output indicates that with default parameters, the function fails to cor-
rectly separate the two clusters. To improve the results, we can increase the
parameter gamma used by the function to calculate the similarity matrix. If
we run the following block of code:

1 clustering = SpectralClustering(n_clusters =2,

2 assign_labels='discretize ',
3 gamma = 20,

4 random_state =0).fit(X)

5 cm = createCM(y, clustering.labels_)

6 print(cm)

we will get the following output:

1 0 1

2 0 150 0

3 1 0 150

In the rest of this section, we illustrate the spectral clustering algorithm
with the Iris dataset. To apply the spectral clustering algorithm to the Iris
dataset, we use the following code:

1 X = iris.data.features

2 y = iris.data.targets

3

4 dm = squareform(pdist(X))

5

6 S = gaussian(dm)

7 U = spectral(S, h=3)

8 bcm , bcc , bov , biters = kmeans2(U, k=3, numrun =100)

9 cm2 = createCM(y, bcm)

10 print([bov , biters ])

11 print(cm2)
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In the above code, we use the Gaussian method to create the similarity matrix.
Executing the above block of code gave the following output:

1 [46.67530552378307 , 6]

2 [12.181825121513388 , 8]

3 [12.181825121513388 , 4]

4 [12.19559744813257 , 5]

5 [12.181825121513388 , 8]

6 [12.19559744813257 , 4]

7 [12.181825121513388 , 5]

8 [12.181825121513388 , 8]

9 [12.181825121513388 , 10]

10 [12.181825121513388 , 11]

11 [12.181825121513388 , 8]

12 0 1 2

13 Iris -setosa 0 50 0

14 Iris -versicolor 48 0 2

15 Iris -virginica 12 0 38

From the output, we see that 14 records were misclassified.
To see the results of applying the scikit-learn algorithm to the Iris data,

we use the following code:

1 clustering = SpectralClustering(n_clusters =3,

2 assign_labels='discretize ',
3 random_state =0).fit(X)

4 cm = createCM(y, clustering.labels_)

5 print(cm)

We use default values for other parameters. Executing the above block of code
gave the following output:

1 0 1 2

2 Iris -setosa 0 50 0

3 Iris -versicolor 2 0 48

4 Iris -virginica 37 0 13

The output shows that 15 records were misclassified.

16.4 Summary

In this chapter, we implemented a spectral clustering algorithm and demon-
strated its effectiveness using two synthetic datasets and the Iris dataset.
Spectral clustering is closely related to kernel-based clustering. Notably, the
kernel k-means algorithm is mathematically equivalent to spectral clustering
[60]. More information about spectral clustering can be found in [196], [246],
and [2, Chapter 8].
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A Mean-Shift Algorithm

Mean-shift algorithms are clustering methods used to identify regions with
high data density. There exist multiple variations of the mean-shift algorithm.
In this chapter, we introduce a simple mean-shift algorithm and its implemen-
tation.

17.1 Description of the Algorithm

Mean-shift algorithms have a long history. According to [126, Chapter 18], the
mean-shift algorithm and the term “mean shift” were perhaps first proposed
by Fukunaga and Hostetler [85] in 1975.

Mean-shift clustering algorithms can be derived from a kernel density es-
timate. Let D = {x0,x1, . . . ,xn−1} be a set of n multivariate data points.
Then a kernel density estimate can be defined as

p(x) =
1

n

n−1∑
i=0

K

(
∥x− xi∥

σ

)
, (17.1)

where K(·) is a kernel function, σ > 0 is a bandwidth parameter, and ∥ · ∥ is
the L2 norm or Euclidean distance.

To identify a mode in the kernel density estimate, we can take the deriva-
tive of p(x) with respect to x and set it to zero. By doing so, we get the
following equation:

p′(x) =
1

n

n−1∑
i=0

K ′
(
∥x− xi∥

σ

)
(x− xi)

2σ∥x− xi∥
= 0, (17.2)

solving which gives

x =
n−1∑
i=0

K ′
(
∥x− xi∥

σ

)
1

∥x− xi∥
∑n−1

j=0 K ′
(
∥x− xj∥

σ

)
1

∥x− xj∥

xi. (17.3)
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Equation (17.3) can be used to formulate the following iterative update of
the mode estimate:

x(t+1) =

n−1
i=0

K ′

∥x(t) − xi∥

σ


1

∥x(t) − xj∥
n−1

j=0 K ′

∥x(t) − xj∥

σ


1

∥x(t) − xj∥

xi, t = 0, 1, . . . , (17.4)

where x(0) is some initial guess of the mode.
Different kernel functions lead to different mean-shift algorithms. Common

kernel functions include the Gaussian kernel function and the Epanechnikov
kernel function. The Gaussian kernel function is defined by

K(u) =
1√
2π

exp


−u2

2


.

The derivative of the Gaussian kernel function is

K ′(u) = − 1√
2π

exp


−u2

2


u

The Epanechnikov kernel function is defined as

K(u) =




3

4
(1− u2), if |u| ≤ 1,

0, if |u| > 1.

The Epanechnikov kernel is also called the parabolic kernel. The derivative of
the Epanechnikov kernel function is

K ′(u) =



−3

2
u, if |u| < 1

0, if otherwise.

When using the Gaussian kernel, the mean-shift iteration is expressed as

x(t+1) =

n−1
i=0

exp


−∥x(t) − xi∥2

2σ2



n−1
j=0 exp


−∥x(t) − xj∥2

2σ2

xi, t = 0, 1, . . . , (17.5)

Where using the parabolic kernel, the mean-shift iteration becomes

x(t+1) =

n−1
i=0

I{∥x(t)−xi∥<σ}n−1
j=0 I{∥x(t)−xj∥<σ}

xi, t = 0, 1, . . . , (17.6)

where I is an indicator function. The above iteration can be expressed as

x(t+1) =
1

|N(x(t))|


y∈N(x(t))

y,
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where N(x(t)) is the set of data points that have less than δ distance from
x(t), i.e.,

N(x(t)) = {y ∈ D : ∥y − x(t)∥ < δ}.
Mean-shift iterations can be represented in matrix form. Suppose that xi’s

are column vectors. Let

X =




xT
0

xT
1
...

xT
n−1




be the n×d data matrix, where d is the dimensionality of the data. Let Z = X
be the matrix containing the initial guesses of the modes. For the Gaussian
kernel, we let W be a matrix defined by

wij = exp


−∥zi − xj∥2

2σ2


, i, j = 0, 1, . . . , n− 1.

Let E be the diagonal matrix defined by

eij =

n−1
j=0 wij , if i = j

0, if i ̸= j,
i, j = 0, 1, . . . , n− 1.

Then the mode matrix Z can be updated as follows:

Z ← WE−1X. (17.7)

Equation (17.7) can also be used for the parabolic kernel. When the parabolic
kernel is used, the weight matrix W is calculated as

wij =


1, if ∥zi − xj∥ < σ,

0, if ∥zi − xj∥ ≥ σ,
i, j = 0, 1, . . . , n− 1.

Mean-shift algorithms require one parameter: the bandwidth. The number
of clusters is not required. The bandwidth determines how many clusters the
algorithm will produce. A larger bandwidth leads to fewer clusters.

The iterative process of a mean-shift algorithm terminates when either
a maximum number of iterations is reached or mode changes fall within a
specified tolerance. Some modes found by a mean-shift algorithm can be close
to each other. As a result, the modes need to be postprocessed to merge modes
that are close to each other. After a final set of modes is determined, the data
points are assigned to their closest modes.

17.2 Implementation

In this section, we implement two mean-shift algorithms. The first one uses
the parabolic kernel function and the second one uses the Gaussian kernel
function.
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The first mean-shift algorithm is implemented as follows:

1 def msparabolic(X, sigma=1, tol=1e-8, maxit =300):

2 X = np.ascontiguousarray(X)

3 Z = X.copy()

4 iters = 1

5 while iters < maxit:

6 W = (pairwise_distances(Z, X) < sigma).astype(float

)

7 E = np.sum(W, axis=1, keepdims=True)

8 Z_ = Z

9 Z = (W/E) @ X

10 iters += 1

11 if np.max(np.abs(Z-Z_)) < tol:

12 break

13 n, d = X.shape

14 clusterCenter = np.zeros((0,d))

15 sind = np.argsort(E[: ,0]) [:: -1]

16 unassigned = [index.item() for index in sind if index >

0]

17 while len(unassigned) > 0:

18 i = unassigned [0]

19 dist = pairwise_distances(Z[i,:]. reshape(1, -1), Z[

unassigned ,:])

20 ind = np.where(dist [0,:] < sigma)[0]

21 clusterCenter = np.append(clusterCenter , Z[i,:].

reshape (1,-1), axis =0)

22 for j in ind:

23 sind[sind== unassigned[j]] = -1

24 unassigned = [index.item() for index in sind if

index > 0]

25 dist = pairwise_distances(X, clusterCenter)

26 clusterMembership = np.argmin(dist , axis =1)

27 return clusterMembership , clusterCenter , Z, iters

In the above code, we use the matrix form to speed up the calculation. Lines
5–12 implement the mean-shift iteration given in Equation (17.7). Lines 13–
26 are the postprocessing step. We sort the modes by density. The den-
sity of a mode is defined to be the number of data points near the mode.
Modes that are within the bandwidth are grouped together. The function
pairwise distances from the scikit-learn library is used to calculate the
pairwise distances between two datasets.

The mean-shift algorithm with the Gaussian kernel is implemented simi-
larly as follows:

1 def msgaussian(X, sigma=1, tol=1e-8, maxit =300):

2 X = np.ascontiguousarray(X)

3 Z = X.copy()

4 iters = 1
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5 while iters < maxit:

6 W = np.exp( -0.5*np.square(pairwise_distances(Z, X)/

sigma))

7 E = np.sum(W, axis=1, keepdims=True)

8 Z_ = Z

9 Z = (W/E) @ X

10 iters += 1

11 if np.max(np.abs(Z-Z_)) < tol:

12 break

13 n, d = X.shape

14 clusterCenter = np.zeros((0,d))

15 sind = np.argsort(E[: ,0]) [:: -1]

16 unassigned = [index.item() for index in sind if index >

0]

17 while len(unassigned) > 0:

18 i = unassigned [0]

19 dist = pairwise_distances(Z[i,:]. reshape(1, -1), Z[

unassigned ,:])

20 ind = np.where(dist [0,:] < sigma)[0]

21 clusterCenter = np.append(clusterCenter , Z[i,:].

reshape (1,-1), axis =0)

22 for j in ind:

23 sind[sind== unassigned[j]] = -1

24 unassigned = [index.item() for index in sind if

index > 0]

25 dist = pairwise_distances(X, clusterCenter)

26 clusterMembership = np.argmin(dist , axis =1)

27 return clusterMembership , clusterCenter , Z, iters

The code is almost the same as that of the mean-shift algorithm with the
parabolic kernel. The only difference is the calculation of the matrix W.

17.3 Examples

In this section, we illustrate the mean-shift algorithms with two synthetic
datasets and the Iris dataset. The examples in this section require the following
Python libraries and functions:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.spatial.distance import pdist

4 from sklearn.datasets import make_blobs , make_circles

5 from sklearn.metrics import pairwise_distances

6 from sklearn.cluster import MeanShift

7 from ucimlrepo import fetch_ucirepo
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8 from dcutil import createCM

The following code shows the application of the mean-shift algorithm with
the parabolic kernel to the first synthetic dataset:

1 centers = [[3, 3], [-3, -3], [3, -3]]

2 X, y = make_blobs(n_samples =300, centers=centers ,

cluster_std =1, random_state =1)

3

4 dm = pdist(X)

5 sigma = np.percentile(dm , 25)

6

7 yhat , cc, Z, iters = msparabolic(X, sigma=sigma)

8 cm1 = createCM(y, yhat)

9 print(cm1)

The bandwidth parameter used above is the 25th percentile of the distances
among the different data points. Executing the above block of code gave the
following output:

1 0 1 2

2 0 100 0 0

3 1 0 1 99

4 2 1 99 0

From the confusion matrix, we see that two data points were misclassified.
We can plot the clustering results by using the following code:

1 fig , ax = plt.subplots(1, 1, figsize =(6, 6))

2 ax.scatter(X[:,0], X[:,1], color="white")

3 for i in range(cc.shape [0]):

4 ax.plot(cc[i,0], cc[i,1], "^", markerfacecolor="white",

5 markeredgecolor="black", markersize =20,

markeredgewidth =2)

6 for i in range(X.shape [0]):

7 ax.text(X[i,0], X[i, 1], str(yhat[i]), fontsize =12)

The above code plots the cluster centers (i.e., modes) by triangles and the
data points by their indices of clusters. Figure 17.1 shows the clustering results
plotted by the above code.

The mean-shift algorithm with the parabolic kernel is also provided by the
scikit-learn library. To apply this algorithm to the first synthetic dataset, we
use the following code:

1 clustering = MeanShift(bandwidth=sigma).fit(X)

2 cm = createCM(y, clustering.labels_)

3 print(cm)
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FIGURE 17.1: Clusters produced by the mean-shift algorithm with the
parabolic kernel. Modes are indicated by triangles.

The bandwidth parameter is set to the same value used previously. Executing
the above block of code gave the following output:

1 0 1 2

2 0 100 0 0

3 1 0 1 99

4 2 1 99 0

The scikit-learn algorithm and our implementation produced the same results.
To test the mean-shift algorithm with the Gaussian kernel on the first

synthetic data, we use the following code:

1 yhat , cc, Z, iters = msgaussian(X, sigma=sigma)

2 cm1 = createCM(y, yhat)

3 print(cm1)
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FIGURE 17.1: Clusters produced by the mean-shift algorithm with the
parabolic kernel. Modes are indicated by triangles.

The bandwidth parameter is set to the same value used previously. Executing
the above block of code gave the following output:

1 0 1 2

2 0 100 0 0

3 1 0 1 99

4 2 1 99 0

The scikit-learn algorithm and our implementation produced the same results.
To test the mean-shift algorithm with the Gaussian kernel on the first

synthetic data, we use the following code:

1 yhat , cc, Z, iters = msgaussian(X, sigma=sigma)

2 cm1 = createCM(y, yhat)

3 print(cm1)

Examples 217

Executing the above block of code gave the following output:

1 0 1 2

2 0 0 100 0

3 1 1 0 99

4 2 99 1 0

From the output, we see that the mean-shift algorithm with the Gaussian
kernel produced the same results as the one with the parabolic kernel.

The second synthetic dataset contains two circular clusters. The following
code shows the application of the mean-shift algorithm with the parabolic
kernel to the second synthetic dataset:

1 X, y = make_circles(n_samples =300, noise =0.05, factor =0.4,

random_state =0)

2 X = np.round(X, decimals =4)

3

4 dm = pdist(X)

5 sigma = np.percentile(dm , 15)

6

7 yhat , cc, Z, iters = msparabolic(X, sigma=sigma)

8 cm1 = createCM(y, yhat)

9 print(cm1)

This time we use the 15th percentile of the distances as the bandwidth. If
we use the 50th percentile of the distances as the bandwidth, we will get
just one cluster. To produce more clusters, we need to reduce the bandwidth
parameter. Executing the above block of code gave the following output:

1 0 1 2 3

2 0 38 33 47 32

3 1 149 0 0 1

The resulting confusion matrix shows that four clusters were produced. The
clustering results are also shown in Figure 17.2. From the figure, we see that
the inner circle and part of the outer circle formed a a cluster. The other part
of the outer circle was divided into three clusters.

To apply the scikit-learn mean-shift algorithm to the second synthetic
dataset, we use the following code:

1 clustering = MeanShift(bandwidth=sigma).fit(X)

2 cm = createCM(y, clustering.labels_)

3 print(cm)

Executing the above block of code gave the following output:

1 0 1 2 3

2 0 38 33 47 32

3 1 149 0 0 1
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FIGURE 17.2: Clusters produced by the mean-shift algorithm with the
parabolic kernel. Modes are indicated by triangles.

We see that our implementation and the scikit-learn implementation produced
the same results.

To apply the mean-shift algorithm with the Gaussian kernel to the second
synthetic dataset, we use the following code:

1 yhat , cc, Z, iters = msgaussian(X, sigma=sigma)

2 cm1 = createCM(y, yhat)

3 print(cm1)

4 yhat , cc, Z, iters = msgaussian(X, sigma=sigma /2)

5 cm1 = createCM(y, yhat)

6 print(cm1)

We run the mean-shift algorithm with different values for the bandwidth pa-
rameter. Executing the above block of code gave the following output:

1 0

2 0 150

3 1 150
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FIGURE 17.2: Clusters produced by the mean-shift algorithm with the
parabolic kernel. Modes are indicated by triangles.

We see that our implementation and the scikit-learn implementation produced
the same results.

To apply the mean-shift algorithm with the Gaussian kernel to the second
synthetic dataset, we use the following code:

1 yhat , cc, Z, iters = msgaussian(X, sigma=sigma)

2 cm1 = createCM(y, yhat)

3 print(cm1)

4 yhat , cc, Z, iters = msgaussian(X, sigma=sigma /2)

5 cm1 = createCM(y, yhat)

6 print(cm1)

We run the mean-shift algorithm with different values for the bandwidth pa-
rameter. Executing the above block of code gave the following output:

1 0

2 0 150

3 1 150
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4 0 1

5 0 76 74

6 1 76 74

When the bandwidth was set to the 15th percentile of the distances, one
cluster was produced. When the bandwidth parameter was reduced to be half
of the 15th percentile of the distances, two clusters were produced. The two
clusters are shown in Figure 17.3. From the figure, we see that the two circles
were split into two clusters.
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FIGURE 17.3: Clusters produced by the mean-shift algorithm with the Gaus-
sian kernel. Modes are indicated by triangles.

Now let us apply the mean-shift algorithms to the Iris dataset. To apply
the mean-shift algorithm with the parabolic kernel to the Iris dataset, we use
the following code:

1 iris = fetch_ucirepo(id=53)

2 X = iris.data.features

3 y = iris.data.targets

4



220 A Mean-Shift Algorithm

5 dist = pdist(X)

6 sigma = np.percentile(dist , 15)

7 yhat , cc, Z, iters = msparabolic(X, sigma=sigma)

8 cm1 = createCM(y, yhat)

9 print(cm1)

In the above code, we first load the Iris data from the UCI machine learning
repository. Then we set the bandwidth parameter to be the 15th percentile of
the distances. Executing the above block of code gave the following output:

1 0 1 2 3 4

2 Iris -setosa 50 0 0 0 0

3 Iris -versicolor 0 47 3 0 0

4 Iris -virginica 0 5 31 12 2

The output shows that five clusters were produced.
The following code shows the application of the scikit-learn mean-shift

algorithm to the Iris dataset:

1 clustering = MeanShift(bandwidth=sigma).fit(X)

2 cm = createCM(y, clustering.labels_)

3 print(cm)

Executing the above block of code produced the following output:

1 0 1 2 3 4

2 Iris -setosa 50 0 0 0 0

3 Iris -versicolor 0 47 3 0 0

4 Iris -virginica 0 5 31 12 2

From the output, we see that our implementation and the scikit-learn algo-
rithm produced the same output.

To test the mean-shift algorithm with the Gaussian kernel on the Iris data,
we run the following code:

1 yhat , cc, Z, iters = msgaussian(X, sigma=sigma)

2 cm1 = createCM(y, yhat)

3 print(cm1)

4 yhat , cc, Z, iters = msgaussian(X, sigma=sigma /3)

5 cm1 = createCM(y, yhat)

6 print(cm1)

Executing the above block of code gave the following output:

1 0 1

2 Iris -setosa 0 50

3 Iris -versicolor 49 1

4 Iris -virginica 50 0

5 0 1 2 3 4 5 6 7 8 9
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5 dist = pdist(X)

6 sigma = np.percentile(dist , 15)

7 yhat , cc, Z, iters = msparabolic(X, sigma=sigma)

8 cm1 = createCM(y, yhat)

9 print(cm1)

In the above code, we first load the Iris data from the UCI machine learning
repository. Then we set the bandwidth parameter to be the 15th percentile of
the distances. Executing the above block of code gave the following output:

1 0 1 2 3 4

2 Iris -setosa 50 0 0 0 0

3 Iris -versicolor 0 47 3 0 0

4 Iris -virginica 0 5 31 12 2

The output shows that five clusters were produced.
The following code shows the application of the scikit-learn mean-shift

algorithm to the Iris dataset:

1 clustering = MeanShift(bandwidth=sigma).fit(X)

2 cm = createCM(y, clustering.labels_)

3 print(cm)

Executing the above block of code produced the following output:

1 0 1 2 3 4

2 Iris -setosa 50 0 0 0 0

3 Iris -versicolor 0 47 3 0 0

4 Iris -virginica 0 5 31 12 2

From the output, we see that our implementation and the scikit-learn algo-
rithm produced the same output.

To test the mean-shift algorithm with the Gaussian kernel on the Iris data,
we run the following code:

1 yhat , cc, Z, iters = msgaussian(X, sigma=sigma)

2 cm1 = createCM(y, yhat)

3 print(cm1)

4 yhat , cc, Z, iters = msgaussian(X, sigma=sigma /3)

5 cm1 = createCM(y, yhat)

6 print(cm1)

Executing the above block of code gave the following output:

1 0 1

2 Iris -setosa 0 50

3 Iris -versicolor 49 1

4 Iris -virginica 50 0

5 0 1 2 3 4 5 6 7 8 9
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6 Iris -setosa 50 0 0 0 0 0 0 0 0 0

7 Iris -versicolor 0 22 19 4 0 0 5 0 0 0

8 Iris -virginica 0 0 0 14 23 6 0 4 2 1

When the bandwidth was set to the 15th percentile of the distances, two
clusters were produced. When the bandwidth was reduced to one third of the
previous value, ten clusters were produced. Several clusters contained only a
few data points.

Our experiments indicate that mean-shift algorithms perform well on
datasets with spherical clusters. For datasets with chain-like structures, mean-
shift algorithms may fragment these clusters into multiple smaller groups. Our
results further highlight that mean-shift algorithms – particularly those using
the Gaussian kernel – are highly sensitive to the bandwidth parameter.

17.4 Summary

In this chapter, we introduced and implemented the mean-shift algorithms.
The mean-shift algorithm with the parabolic kernel is also implemented in the
scikit-learn library. Our implementation is based on that of the scikit-learn
library. However, the scikit-learn version is significantly more sophisticated
than the one presented in this chapter. For more information on mean-shift
algorithms, readers may refer to [36], [45], and [126, Chapter 18].
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